Instrumentation & Measurements MECH 430

Chapter 3 Measurement System Behavior

3.1 Introduction

- This chapter introduces how to simulate measurement system behavior using mathematical modeling.
- Measurement systems respond differently to different types of input signals.
- Measurement system in this discussion refers to individual stages in the measurement setup or the complete setup.

3.3 Sensor Models

- Systems can be modeled using differential equations.
- The behavior of sensors can described as
 - Zero-order model
 - First-order model
 - Second-order model
- Higher order sensors are usually approximated by one of the models shown above

Zero Order Sensors

- Represent ideal or perfect dynamic performance
- Response governed by linear algebraic relation: y(t) = K
 x(t), K is sensor gain
- The system output respond to the input signal instantly.
- Example: potentiometers, tachometers & LVDTs

First Order Sensors

 Behavior governed by: where τ is time constant

$$\tau \frac{dy(t)}{dt} + y(t) = Ku(t)$$

• For a step input $u(t) \rightarrow$

$$y(t) = K + (y_0 - K)e^{(-t/\tau)}$$

• Transfer function: $H(s)=Y(s)/U(s)=K/(\tau s+1)$

First Order Sensors

Table 3.1 First-Order System Response andError Fraction

<i>t</i> /τ	% Response	Γ	% Error
0	0.0	1.0	100.0
1	63.2	0.368	36.8
2	86.5	0.135	13.5
2.3	90.0	0.100	10.0
3	95.0	0.050	5.0
5	99.3	0.007	0.7
∞	100.0	0.0	0.0

Example of first order sensor system

- Example 3.3: A thermometer with a time constant of 30 seconds is originally at room temperature, that is 20 degrees Celsius. It is suddenly exposed to a 37 degrees Celsius.
- Modeling with a first order differential equation:
- 30dT(t)/dt + T(t) = 37
- The solution of which is:
- $T(t) = 37 + (20 37) e^{-t/30}$
- $T(t) = 37 17 e^{-t/30}$ degrees Celsius

Second Order Sensors

- Behavior governed by: $\frac{d^2 y(t)}{dt^2} + 2\zeta \omega_n \frac{dy(t)}{dt} + \omega_n^2 = Kx(t)$
- ζ is damping ratio and ω_n is natural frequency

Unit-step response of a second order system

Depending on the value for ζ three forms of homogeneous solution are possible:

 $0 \leq \zeta < 1$ (underdamped system solution)

$$y_h(t) = C e^{-\zeta \omega_n t} \sin\left(\omega_n \sqrt{1-\zeta^2 t} + \Theta\right)$$
(3.14a)

 $\zeta = 1$ (critically damped system solution)

$$y_h(t) = C_1 e^{\lambda_1 t} + C_2 t e^{\lambda_2 t}$$
 (3.14b)

 $\zeta > 1$ (overdamped system solution)

$$y_h(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}$$
 (3.14c)

Response of a second-order sensor to a step input.

Unit-step response of a second order system

