Corrections to PROBLEMS of Chapter 2 Sedra \& Smith

Chapter 2-Problems

2.1

The minimum number of pins requiredby doal-op-amp is 8 . Each op-amp has 2 input terminals (4 pins) and one output termbal (2pins). Another 2 pins are required for power.
Similarly, the minimum number of pins required by quad-opamp is 14 :
$4 \times 2+4 \times 1+2=14$
2.2

Refer to Fig. P2.2. $v_{+}=v_{1} \frac{1 \mathrm{k} \Omega}{1 \mathrm{M} \Omega+1 \mathrm{k} \Omega}=\frac{4}{1001} v$
$v_{0}=A v_{+} \Rightarrow A=\frac{4}{4 / 1001}=1001$

```
2.3
```

The voltage at the positive input has to be -3.300 .
$v_{+}=-3.020 \mathrm{v}, A=\frac{v_{0}}{\left(v_{+}-v_{-}\right)}=\frac{-2}{-3.020-(-3)}=100$

2.4

\#	4	v_{2}	U ${ }_{\text {d }}$	v_{0}	voldy
1	0.00	0.00	0.00	0.00	
2	1.00	1.00	0.00	0.00	
3	(9)	1.00	(b)	1.00	
4	1.00	1.10	0.6	10.1	101
5	2.01	2.00	-0.01	-0.99	99
6	1.99	2.00	0.01	1.00	100
7	5.10	(c)	(d)	-5.0]	

experiments $4,5,6$ show that the gain is
approximately $100 \mathrm{~V} / \mathrm{V}$. The missing entry for experiment \#3 can be predicted as follows:
(b) $v_{d}=\frac{v_{0}}{A}=\frac{1.00}{100}=0.01 \mathrm{~V}$.
(a) $v_{1}=v_{2}-v_{d}=1.00-0.01=0.99 v$

The missing entries for experiment \#7:
(c) $u_{d}=\frac{-5.10}{100}=-0.051 \mathrm{v}$
(c) $v_{2}=v_{1}+v_{d}=5.10-0.051=5.049 \mathrm{~V}$

All the results seem to be reasonable.

```
2.5
```


$$
2.6
$$

$v_{C M}=1 v_{0} \operatorname{Sin}(2 \pi 60) t \quad=\frac{1}{2}\left(v_{1}+v_{2}\right)$
$v_{d}=0.01 \operatorname{Sin}(2 \pi 1000) t=v_{1}-v_{2}$
$v_{1}=v_{\text {CM }}-v_{d / 2}=\sin (120 \pi \pi t-0.005 \sin 2000 \pi t$
$v_{2}=v_{c M}+v_{d / 2}=\sin 120 \pi t+0.005 \sin 2000 \pi t$
\square
$v_{d}=R\left(G_{m 2} v_{2}-G_{m s} v_{1}\right)$ Referto Fig. 2.4.
$v_{0}=v_{3}=\mu v_{d}=\mu R\left(G_{m 2} v_{2}-G_{m_{1}} v_{1}\right)$
$v_{0}=\mu R\left(G_{m} v_{2}+\frac{1}{2} \Delta G_{m} v_{2}-G_{m} Y_{1}+\frac{1}{2} \Delta G_{m} v_{1}\right)$
$v_{0}=\mu R G_{m}(\underbrace{\left(v_{2}-v_{1}\right.}_{v_{\text {Id }}})+\frac{1}{2} \mu R \Delta G_{m} \underbrace{\left(v_{1}+v_{2}\right)}_{2 v_{\text {rcM }}}$
we have $v_{0}=A v_{r_{d}}+A_{c m} v_{t c m}$
$\Rightarrow A_{d}=\mu R G_{m} \quad, \quad A_{c m}=\mu R \Delta G_{m}$
$C M R R=20 \log \left|\frac{A_{d}}{A C M}\right|=20 \log \frac{G_{m}}{A G_{m}}$

2.11

a. $G=-1 v / v$
b. $G=10 \mathrm{v} / \mathrm{v}$
c. $G=-0.1 \mathrm{v} / \mathrm{v}$
d. $G=100 \mathrm{~V} / \mathrm{V}$
e. $G=10 \% /$

2.12

a. $G=-1 \mathrm{~V} / \mathrm{V}=-\frac{R_{2}}{R} \Rightarrow R_{1}=R_{2}=10 \mathrm{k} \Omega$
b. $G=-2 V / v=\frac{-R_{2}}{R} \Rightarrow R=10 \mathrm{k} \Omega, R_{2}=20 \mathrm{kR}$
c. $G=-0.5 \mathrm{~V} / \mathrm{V}=\frac{-R_{2}}{R} \Rightarrow R=20 \mathrm{~kJ}, R_{2}=10 \mathrm{k} \Omega$
d. $G=-100 \% \mathrm{v}=-\frac{R_{2}}{R} \Rightarrow R=10 \mathrm{k} \Omega, R_{2}=1 \mathrm{M} \Omega$

2.13

$\frac{v_{0}}{v_{1}}=-5=\frac{-R_{2}}{R_{1}} \Rightarrow R_{2}=5 R_{1}$
$R_{1}+R_{2}=120 \mathrm{k} \Omega \Rightarrow 5 R_{1}+R_{1}=120 \mathrm{k} \Omega \Rightarrow$
$R_{1}=20 \mathrm{k} \Omega \Rightarrow R_{2}=100 \mathrm{k} \Omega$

2.14

$20 \log |G|=26 \mathrm{~dB} \Rightarrow G=-19.95 \mathrm{~V} / \mathrm{V}=\frac{v_{0}}{G_{i}}=\frac{-R_{2}}{R}$
$\Rightarrow R_{2}=19.95 R_{1} \leq 10 \mathrm{M} \Omega$
For largest possible input resistance, seled
$R_{2}=10 \mathrm{M} \Omega \Rightarrow R_{1} \simeq 500 \mathrm{k} \Omega$
$R_{\text {in }}=500 \mathrm{k} \Omega$

$G_{0} \frac{v_{0}}{v_{i}}=\frac{-R_{2}}{R_{1}}=\frac{-100}{10}=-10$
$\left.v_{10 w}=-10 V, v_{\text {high }}=0, v_{\text {avg }}=-5 \mathrm{~V} \cdots .10 \mathrm{~V}\right]$

2.16

$\frac{v_{0}}{v_{i}}=-\frac{R_{2}}{R_{1}} \Rightarrow u_{0}=-1 \times-\frac{10 \mathrm{k} \Omega}{1 \mathrm{k} \Omega}=10 \mathrm{~V}$
$i_{2}=\frac{v_{0}}{2^{k} \Omega}=5 \mathrm{~mA}$
$i_{1}=i_{3}=\frac{v_{0}}{10 \mathrm{k} \Omega}=1 \mathrm{~mA}$
$i_{4}=i_{2}-i_{3}=4 \mathrm{~mA}$ This additional current
$\begin{aligned} & \text { comes from the output of the } \\ & \text { op-aump. }\end{aligned}$
$v_{1}=\frac{-v_{0}}{A}=-\frac{v_{0}}{200}$
$\frac{v_{0}}{v_{i}}=-50 \mathrm{~V}$

$\frac{v_{i}-\left(\frac{-v_{0}}{A}\right)}{R_{1}}=\frac{\left(\frac{-v_{0}}{A}-v_{0}\right)}{100 \mathrm{~K} \Omega} \Rightarrow R=100 \mathrm{~K} \times \frac{\frac{v_{0}}{200}-\frac{v_{0}}{50}}{\frac{-v_{0}}{200}-v_{0}}$
$\Rightarrow R_{1}=100 \mathrm{~K} \times \frac{3}{201}=1.49 \mathrm{k} \Omega$
shunt Resistor R_{a} : $R_{a} / / 2^{k} \Omega=1.49 \mathrm{~K}$
$\frac{R_{a} \times 2}{R_{a}+2}=1.49 \Rightarrow R_{a}=5.84 \mathrm{k} \Omega$

2.17

$$
\begin{aligned}
& \left|G_{\text {ain }}\right|=\frac{R_{2}}{R_{1}}=\frac{R_{2}(1+x / 100)}{R_{1}(1+x / 100)} \simeq \frac{R_{2}}{R_{1}}\left(1 \pm \frac{2 x}{100}\right) \\
& \Rightarrow 2 x \% \text { is the tolerance on the closed loop } \\
& \text { gain (G). } \\
& G=-100 \mathrm{~V} / \mathrm{v}, x=5 \Rightarrow-110<G<-90 \\
& \text { or more precisely: }-100 \times \frac{105}{95}<G<-100 \frac{95}{105} \\
& -110.5<G<-90.5
\end{aligned}
$$

$$
\begin{aligned}
& 2.18 \\
& G=\frac{v_{0}}{v_{i}}=\frac{-R_{2}}{R_{1}} \Rightarrow \frac{R_{2}}{R_{1}}=\frac{5}{15} \\
& v_{1}=0 \mathrm{~V} \quad, v_{2}=v_{0}=5 \mathrm{~V} \\
& F_{\text {or }} \pm 1 \% \text { on } R_{1}, R_{2}=R_{1}=15 \pm 0.15 \mathrm{k} \Omega \\
& v_{0}=v_{i} \frac{-R_{2}}{R_{1}}=15 \frac{R_{2}}{R_{1}} \Rightarrow 15 \times \frac{4.95}{15.15} \leqslant v_{0} \leqslant 15 \times \frac{5.05}{14.85} \\
& \Rightarrow 4.9 \mathrm{~V} \leqslant v_{0} \leqslant 5.1 \mathrm{~V} \quad R_{2}=5 \pm 0.05 \mathrm{k} \Omega \\
& \text { For } v_{i}=-15 \pm 0.15 \mathrm{~V} \quad 14.85 \times \frac{4.95}{15.15} \leqslant v_{0} \leqslant 15.15 \times \frac{5.05}{14.85} \\
& \Rightarrow 4.85 \mathrm{~V} \leqslant v_{0} \leqslant 5.15 \mathrm{~V} \quad
\end{aligned}
$$

will vary from $\frac{-10 \mathrm{~V}}{\mathrm{o}}$ to $\frac{110 \mathrm{~V}}{1000}$. Thus
the virtual ground will depart from the ideal
voltage of zero by a maximum of $\pm 10 \mathrm{mV}$. voltage of zero by a maximum of 110 mV .

2.22

a) For $A=\infty: v_{i}=0$
$v_{0}=-i_{i} R_{f}$
$R_{m}=\frac{v_{0}}{u}=-R_{F}$

b) For A.finite : $v_{i}=\frac{-v_{0}}{A}, v_{0}=v_{i}-i_{i} R_{F}$
$\rightarrow V_{0}=\frac{-v_{0}}{A}-i_{i} R_{f} \Rightarrow R_{m}=\frac{v_{0}}{i_{i}}=-\frac{R_{f}}{1+\frac{1}{A}}$
$R_{i}=\frac{V_{i}}{U_{i}}-\frac{R_{f}}{1+A}$
2.23
$v_{0}=-A v_{-}=i_{i} R_{2}$
$i_{2} R_{2}=(1+A) v_{-}$
$v_{-}=\frac{i i R_{2}}{1+A}$

Now: $v_{i}=i_{i} R+v_{-}=i_{i} R_{1}+l_{i} \frac{R_{2}}{1+A}$
$R_{l n}=\frac{v_{i}}{i_{i}}=R_{1}+\frac{R_{2}}{1+A}$

2.24

$G=\frac{-R_{2} / R_{1}}{1+\frac{1+R_{2} / R_{1}}{A}} \quad$ Gain Error $=\left(1+\frac{R_{2}}{R_{1}}\right) / A \times 100$

ϵ	0.1%	1%	10%
	$1000\left(1+\frac{R_{2}}{R}\right)$	$100\left(1+\frac{R_{2}}{R_{1}}\right)$	$10\left(1+\frac{R_{2}}{R_{1}}\right)$

the error on the denominator. To restore the gain to its nominal value of R_{2} / R_{1} we use: $\frac{R_{1}}{R_{1 a}}=\frac{1+R_{2} / R_{1}}{A}=\frac{\epsilon}{100} \rightarrow R_{1 a}=\frac{100 R_{1}}{\epsilon}$

ϵ	$0.1 \%_{6}$
	1000 R

1%
$100 R_{1}$
10%
$10 R_{1}$
2.25
$R_{1}^{\prime}=R_{1} \| R_{c} \quad G^{\prime}=\frac{-R_{2} / R_{1}^{\prime}}{1+\frac{1+R_{2} / R_{1}^{\prime}}{A}}$
$G=-\frac{R_{2}}{R_{1}}$
In order for $G^{\prime}=G: \quad G=\frac{-R_{2} / R_{1}^{\prime}}{1+\frac{1+R^{2} / R_{1}^{\prime}}{A}}=\frac{-R_{2}}{R_{1}}$
$R_{1}^{\prime}=\frac{R_{1} R_{c}}{R_{1}+R_{c}}$
$\Rightarrow \frac{R_{1}+R_{c}}{R_{1} R_{c}}=\frac{1}{R_{1}}\left(1+\frac{1+R_{2} \frac{\left(R_{1}+R_{c}\right)}{R_{1} R_{c}}}{A}\right)$
$\left(R_{1}+R_{c}\right) A=A R_{c}+R_{c}+\frac{R_{2}}{R_{1}}\left(R_{1}+R_{c}\right)$
$R_{1} A=R_{c}+G R_{1}+G R_{c}$
$\frac{R_{c}}{R_{t}}=\frac{A-G}{1+G}$
2.26
$G=\frac{-R_{2} / R_{1}}{1+\frac{1+R_{2} / R_{1}}{A}} \quad G_{\text {nominal }}=\frac{-R_{2}}{R_{1}}$
$\epsilon=\left|\frac{G-G_{\text {nominal }}}{G_{\text {nominal }}}\right|=\left|\frac{G_{0}}{G_{\text {nominal }}}-1\right|$
$E=\left|\frac{1}{1+\frac{1+R_{2} / R_{1}}{A}}-1\right|=\left|\frac{-\frac{1+R_{2} / R_{1}}{A}}{1+\frac{1+R_{2} / R_{1}}{A}}\right|=\frac{1}{\frac{A}{1+\frac{R_{2}}{R_{1}}}+1}$
which can be rearranged to yield:
$\left.\begin{array}{rl}\frac{A}{1+\frac{R_{1}}{R_{1}}}+1 \Rightarrow \frac{1}{\epsilon} \Rightarrow A=\left(1+\frac{R_{2}}{R_{1}}\right)\left(\frac{1}{\epsilon}-1\right) \\ \text { or } A & =\left(1--_{\text {monad }}\right)\end{array}\right)\left(\frac{1}{\epsilon}-1\right)$
For $G_{\text {nominal }}=-100 \mathrm{~V} / \mathrm{V}$ and $\epsilon=10 \%=0.1$
$A=(1+100)\left(\frac{1}{0.1}-1\right)=909 \mathrm{~V} / \mathrm{V}$
This is the minimum required value for A.

2.27

$|G|=\frac{R_{2} / R_{1}}{1+\frac{1+\frac{R_{2}}{R_{1}}}{A}} \quad A \longrightarrow A\left(1-\frac{x}{100}\right)$
$\left|G^{\prime}\right|=\frac{\frac{R_{2} / R_{1}}{1+\frac{1+R_{2}\left(R_{1}\right.}{A\left(1-\frac{x}{100}\right)}}}{1 G^{10}}$
For $\left|G^{\prime}\right|=|G|\left(1-\frac{x}{100 k}\right)$
$\frac{R_{2} / R_{1}}{\left.1+\frac{1+R_{2} / R_{1}}{A(1-x / 100}\right)}=\frac{R_{2} / R_{1}}{1+\frac{1+R_{1} / R_{1}}{A}}\left(1-\frac{x}{100 K}\right)$
$1+\frac{1+R_{2} / R_{1}}{A\left(1-\frac{x}{100}\right)}=\left(1+\frac{1+R_{2}\left(R_{1}\right.}{A}\right) /\left(1-\frac{x}{100 K}\right)$
$1-\frac{x}{100 K}+\frac{1+R_{2} / R_{1}}{A} \frac{1-x / 100 K}{1-x / 100}=1+\frac{1+R_{2 / R_{1}}}{A}$
$\frac{1+R_{2} / R_{1}}{A} \frac{1-x / 100 \mathrm{~K}-1+x / 100}{1-x / 100}=\frac{x}{100 \mathrm{~K}}$
$A=\frac{-1+K}{1-\frac{x}{100}}\left(1+R_{2} / R_{t}\right)=\left(\frac{K-1}{1-\frac{x}{100}}\right)\left(1+\frac{R_{2}}{R_{1}}\right)$
For $\frac{R_{2}}{R_{1}}=100 \quad x=50 \quad k=100: A=\frac{99}{0.5} \times 101=19998$
$A \simeq 2 \times 10^{4} \mathrm{~V} / \mathrm{V}$
Thus for $A=2 \times 10^{4} \mathrm{~V} / v$, a reduction of 50% results in only 0.51 . reduction of the closed loop gain whose nominal value is $\frac{R_{2}}{R_{1}}(100)$.

2.28

From the results of example 2.2, the gain of
the circuit in fig. 2.8 is given by:
$\frac{v_{4}}{v_{i}}=-\frac{R_{2}}{R_{1}}\left(1+\frac{R_{4}}{R_{2}}+\frac{R_{4}}{R_{3}}\right)$
For $R_{1}=R_{2}^{R_{1}}=R_{4}=1 M \Omega \xrightarrow{R_{2}} \stackrel{R_{3}}{-} \frac{v_{0}}{v_{1}}=-\left(1+1+\frac{1}{R_{3}}\right)$
a) $\frac{v_{0}}{v_{0}}=-10 \mathrm{~V} / \mathrm{v} \Rightarrow 10=2+\frac{1}{R_{3}} \Rightarrow R_{3}=\frac{1}{8} \mathrm{mR}=125^{\frac{R_{3}}{2}}$
b) $\frac{v_{0}}{v_{0}}=-100 \mathrm{~V} / \mathrm{V} \Rightarrow 100=2+\frac{1}{R_{3}} \Rightarrow R_{3}=\frac{1}{98} M \Omega=10 . \mathrm{R}^{2}$
c) $\frac{v_{i}}{v_{i}}=-2 v / v \Rightarrow 2=2+\frac{1}{R_{3}} \Rightarrow R_{3}=\infty$: eliminate R_{3}.

2.29

$R_{2} / R_{1}=1000, R_{2}=100 \mathrm{k} \Omega \Rightarrow R_{1}=100 \Omega$
a) $R_{\text {in }}=R_{1}=100 \mathrm{~s}$
b) $\frac{v_{0}}{v_{i}}=\frac{-R_{2}}{R_{1}}\left(1+\frac{R_{4}}{R_{2}}+\frac{R_{4}}{R_{3}}\right)=-1000$
IF $R_{2}=R_{1}=R_{4}=100 \mathrm{~K} \Rightarrow R_{3}=\frac{100 \mathrm{~K} \quad \Omega}{1000-2} \approx 100$
$R_{\text {in }}=R_{1}=100 \mathrm{~K} \Omega$

2.30

$v_{x}=0-i_{1} R_{2} \quad, i_{1}=\frac{v_{1}}{R_{1}} \Rightarrow v_{x}=-v_{1} \frac{R_{2}}{R_{1}}$
$\frac{v_{x}}{v_{2}}=-\frac{R_{2}}{R_{1}}$ $\frac{v_{x}}{v_{\tau}}=-\frac{R_{2}}{R_{1}}$
$v_{x}=v_{0} \frac{R_{2} \| R_{3}}{R_{2} \| R_{3}+R_{4}}=\frac{R_{2} R_{3}}{R_{2} R_{3}+R_{4} R_{2}+R_{4} R_{3}}$
$\frac{v_{0}}{v_{x}}=\frac{R_{2} R_{3}+R_{2} R_{4}+R_{3} R_{4}}{R_{2} R_{3}}=1+\frac{R_{4}}{R_{3}}+\frac{R_{4}}{R_{2}}$
$\frac{v_{0} / v_{x}}{v_{1} / v_{x}}=\frac{v_{0}}{v_{i}}=\frac{\left(1+R_{4} / R_{3}+R_{4} / R_{2}\right)}{-R_{1} / R_{2}} \Rightarrow$
$\frac{v_{0}}{v_{i}}=-\frac{R_{2}}{R_{1}}\left(1+\frac{R_{4}}{R_{3}}+\frac{R_{4}}{R_{2}}\right)$
2.31
a) $R_{1}=R$

$$
\begin{aligned}
& R_{2}=R \| R+\frac{R}{2}=\frac{R}{2}+\frac{R}{2}=R \\
& R_{3}=R_{2}\left\|R+\frac{R^{2}}{2}=R\right\| R+\frac{R}{2}=R \\
& R_{4}=R_{3}\left\|R+\frac{R}{2}=R\right\| R+\frac{R}{2}=R
\end{aligned}
$$

$$
\text { b) } U_{1} R I=R I_{1} \Rightarrow I_{1}=I
$$

$$
I_{12}=I_{+} I=2 I \Rightarrow \frac{ \pm_{1}=I}{U_{1}+2 I_{\times} \frac{R}{2}}=R I_{2}
$$

$$
R I+R I=R I_{2} \Rightarrow I_{2}=2 I
$$

$$
I_{13}=I_{2}+I_{12}=4 I \Rightarrow V_{2}+4 I_{\times} \frac{R}{2}=R I_{3}
$$

$$
R_{\times 2} I+4 I \times \frac{R}{2}=R I_{3} \Rightarrow I_{3}=4 I, I I_{4}=-(4 I+4 I)
$$

Cont.

$$
\text { c) } \begin{aligned}
& v_{1}=I_{1} R=I R \\
& v_{2}=I_{2} R=-2 I R \\
& v_{3}=-I_{3} R=-4 I R \\
& v_{4}=-I_{3} R+I_{4} \frac{R}{2}=-4 I R-8 I \frac{R}{2}=-8 I R
\end{aligned}
$$

2.32

a) $I_{1}=\frac{1 V}{10 \mathrm{~K} \Omega}=0.1 \mathrm{~mA}$
$I_{2}=10 \mathrm{kK}=0$,
$I_{2}=10.1 \mathrm{~mA} \quad, \quad \frac{I}{2} \times 10 \mathrm{k} \Omega=\frac{T}{3} \times 100 \Omega \Rightarrow \frac{I}{3}=10^{-\mathrm{A}}$
$v_{x}=10 \mathrm{~mA} \times 100 \Omega=1 \mathrm{~V}$
b) $v_{x}=R_{L} I_{L}+v_{0} \quad, I_{L}=I_{2}+I_{3}=10.1 \mathrm{~mA}$
$1 v=R_{L} \times 10.1 \mathrm{~mA}+v_{0}^{L}$

c) $100 \Omega \leqslant R \quad 61 \mathrm{k} \Omega$
I_{L} stays fixed at 10.1 mA
$u_{0}=v_{x}-R_{L} I_{L}=1-R_{L} \times 10.1 \Rightarrow-9.1^{V} \leqslant v_{0} \leqslant-0.01^{v}$

2.33

b) $R_{L}=1 \mathrm{k} \Omega \quad-12^{5} \leqslant v_{0} \leq 12^{v}$
$v_{0}=R^{i_{L}}+10 \mathrm{k} \Omega_{n} i_{I}=i_{I}\left(1 \mathrm{k} \Omega_{\times} \frac{i_{c}}{i_{T}}+10^{\mathrm{k} R}\right)$

$$
v_{0}=i^{c}(1 \times 20+10)=30 i_{1}
$$

$$
i_{1}=\frac{t_{0}}{30} \Rightarrow \frac{-12}{30} \leqslant i_{t} \leqslant \frac{12}{30} \rightarrow-0.4 \leqslant i \leqslant 0.4
$$

from part: $i_{L}=20 \mathrm{k} i_{I}=20 \mathrm{~mA}$

2.34

$R_{2} \gg R_{3}$, if we ignore the current access
$R_{2}: v_{A}=\frac{v_{0} R_{3}}{R_{3}+R_{4}}$ $\frac{v_{工}}{R_{1}}=\frac{0-V_{A}}{R_{2}} \Rightarrow v_{A}=-\frac{R_{2} v_{1}}{R_{1}}$
vo. $\frac{R_{3}}{R_{3}+R_{4}}=-\frac{R_{2}}{R_{1}} \times v_{1} \Rightarrow \frac{v_{0}}{v_{1}}=\frac{-R_{2}}{R_{1}}\left(1+\frac{R_{4}}{R_{3}}\right)$
Now if we recalculate v_{A} considering that
there is a voltage divider between R_{4} and

$$
\begin{gathered}
R_{3} \| R_{2}: v_{A}=v_{0} \frac{R_{3} / \| R_{2}}{R_{4}+R_{3} / \| R_{2}}=v_{0} \frac{R_{3} R_{2}}{R_{1}\left(R_{3}+R_{2}\right)+R_{23} R_{3}} \\
U_{A}=v_{0} \frac{R_{2} R_{3}}{R_{3} R_{1}+R_{2} R_{4}+R_{2} R_{3}} \\
v_{A}=v_{0} \frac{1}{R_{4} / R_{2}+\frac{R_{4}}{R_{3}}+1} \\
v_{A}=-\frac{R_{2}}{R_{1}} \cdot v_{I}=>\frac{v_{0}}{v_{1}}=\frac{-R_{2}}{R_{1}}\left(\frac{R_{4}}{R_{2}}+\frac{R_{4}}{R_{3}}+1\right) \\
\text { same as example 2.2. }
\end{gathered}
$$

$$
2.35
$$

$R_{I}=100 \mathrm{k} \Omega \quad-10 \leqslant \frac{v_{0}}{v_{i}} \leqslant-1 \mathrm{v} / \mathrm{v}$
$R_{t}=R_{1}=100 \mathrm{k} \Omega$
$\frac{v_{0}}{v_{1}}=\frac{-R_{2}}{R_{1}}\left(\frac{R_{4}}{R_{3}}+\frac{R_{4}}{R_{2}}+1\right)$
$R_{4}=0 \Rightarrow \frac{v_{0}}{v_{i}}=\frac{-R_{2}}{R_{1}}=-1 \rightarrow R_{2}=100 \mathrm{k} \Omega$
$R_{4}=10^{k \Omega} \Rightarrow \frac{v_{0}}{v_{i}}=-10=-1 \times\left(\frac{10^{k \pi}}{R_{3}}+\frac{10^{k \Omega}}{100 \Omega^{R}}+1\right)$
$+10=\left(\frac{10}{R_{3}}+1.1\right) \Rightarrow R_{3}=1.12 \mathrm{k} \Omega$
Potentiometer in the middles $\frac{v_{0}}{v_{i}}=-1\left(\frac{5}{5+R_{3}}+\frac{5}{100}+1\right)$
$\frac{v_{0}}{v_{i}}=-1.87 / v$

2. 36

2.37

we choose the weighted Summer configuration
$v_{0}=-\left[4 v_{1}+\frac{v_{2}}{3}\right]$
$i_{1}=\frac{v_{1}}{R_{1}} \quad i_{2}=\frac{v_{2}}{R_{2}}$
$i_{1}, i_{2} \leqslant 0.1 \mathrm{~m}$
$\frac{R_{f}}{R_{1}}=4, i f R_{1}=10 \mathrm{k} \Omega \Rightarrow R_{f}=40 \mathrm{k} \Omega$
$\frac{R_{F}}{R_{2}}=\frac{1}{3} \Rightarrow R_{2}=120 \mathrm{k} \Omega$

2.38

$v_{0}=-\left(2 v_{1}+4 v_{2}+8 v_{3}\right)$
$R_{1}, R_{2}, R_{3} \geqslant 10 \mathrm{k} \Omega$
$\frac{R_{F}}{R_{1}}=2 \quad, \frac{R_{F}}{R_{2}}=4 \quad \frac{R_{F}}{R_{3}}=8$
$R_{3}=10^{\mathrm{k} \Omega} \Rightarrow R_{f}=80 \mathrm{k} \Omega$

$$
R_{2}=20 \mathrm{k} \Omega
$$

$$
\hat{R_{1}}=40 \mathrm{k} \Omega
$$

2.39

a) $v_{0}=-\left(v_{1}+2 v_{2}+3 v_{3}\right)$
$\frac{R_{f}}{R_{1}}=1 \Rightarrow R_{1}=10 \mathrm{KN} \Omega, \frac{R_{f}}{R_{2}}=2 \Rightarrow R_{2}=5 \mathrm{k} \Omega$
$\frac{R_{t}}{R_{3}}=3 \Rightarrow R_{3}=\frac{10}{3} \mathrm{k} \Omega$
$R_{I_{1}}=10 \mathrm{k} \Omega$
$R_{\mathrm{L}_{2}}=5 \mathrm{k} \Omega$
$R_{\text {IS }}=3.3 \mathrm{~K}$

b) $v_{0}=-\left(v_{1}+v_{2}+2 v_{3}+2 v_{4}\right)$

Suggested configurations:

2.40

The output signal should be:
$v_{0}=-5 \sin \omega t-5$
if we assume: $v_{1}=5 \sin \omega t_{?}$ $\left.\begin{array}{l}v_{2}=2 v\end{array}\right\} v_{0}=-\left(v_{1}+2.5 v_{2}\right)$
In a weighted summer configuration:
$\frac{R_{f}}{R_{1}}=+1 \quad \frac{R_{f}}{R_{2}}=2.5$
$R_{2}=10 \mathrm{~K} \Omega \Rightarrow R_{f}=25 \mathrm{~K}=R_{1}$

2.41
$v_{0}=v_{1}+2 v_{2}-3 v_{3}-4 v_{4} \quad$: Consider Fig. 2.11.
According to eq. 2.8 For a weighted summer
circuit: $v_{0}=v_{1} \frac{R_{a}}{R_{1}} \frac{R_{c}}{R_{b}}+v_{2} \frac{R_{a}}{R_{2}} \frac{R_{c}}{R_{b}}-v_{3} \frac{R_{c}}{R_{3}}-v_{4} \frac{R_{c}}{R_{4}}$
$\frac{R_{a}}{R_{1}} \frac{R_{c}}{R_{b}}=1 \quad, \frac{R_{a}}{R_{2}} \frac{R_{c}}{R_{b}}=1, \frac{R_{c}}{R_{3}}=3, \frac{R_{c}}{R_{4}}=4$
assume:
$R_{4}=10 \mathrm{~K} \Omega \Rightarrow R_{c}=40 \mathrm{~K} \Omega \Rightarrow R_{3}=\frac{40}{3}=13.3 \mathrm{k} \Omega$
$\frac{R_{a}}{R_{1}} \times \frac{40}{R_{b}}=1 \quad \frac{R_{a}}{R_{2}} \times \frac{40}{R_{b}}=1$
$R_{b}=40 \mathrm{k} \Omega, R_{1}=R_{2}=R_{a}=10 \mathrm{k} \Omega$

2.42

$v_{1}=3 \sin (2 \pi \times 60 t)+0.01 \sin (2 \pi \times 1000 t)$
$v_{2}=3 \sin (2 \pi \times 60 t)-0.01 \sin (2 \pi \times 1000 t)$
we want to have: $v_{0}=10 v_{1}-10 v_{2}$
we use the circuit in Fig. 2.11.
According to Eq. 2.8:
$v_{0}=v, \frac{R_{a}}{R_{1}} \frac{R_{c}}{R_{b}}-v_{3} \frac{R_{c}}{R_{3}}$
$\frac{R_{a}}{R_{1}} \frac{R_{c}}{R_{b}}=10, \frac{R_{c}}{R_{3}}=10$, if $R_{3}=10 \Rightarrow R_{c}=100^{\mathrm{KR}}$
$\begin{aligned} \Rightarrow \frac{R_{a}}{R_{1}} \times \frac{100^{\mathrm{k}}}{R_{b}}=10 \Rightarrow R_{a}=R_{1} & =R_{b}=10 \mathrm{k} \Omega \\ R_{c} & =100 \mathrm{k} \Omega\end{aligned}$

$v_{0}=10 v_{1}-10 v_{2}=10 \times 0.02 \operatorname{Sin} 2 \pi \times 1000 \mathrm{t}$ $v_{0}=0.2 \operatorname{Sin}(2 \pi \times 1000 t) \quad-0.2^{v} \leqslant v_{0} \leqslant 0.2^{v}$

2.43

This is a weighted summer circuit:

$$
\begin{aligned}
& v_{0}=-\left(\frac{R_{f}}{R_{0}} v_{A}+\frac{R_{f}}{R_{1}} v_{1}+\frac{R_{f}}{R_{2}} v_{2}+\frac{R_{f}}{R_{3}} v_{3}\right) \\
& \text { we may write }: v_{1}=5^{v} \times a_{0} \quad v_{2}=5^{v} \times a_{2} \\
& \qquad v_{1}=5^{v_{*}} \times a_{1} \quad v_{3}=5^{v} \times a_{3} \\
& v_{0}=-R f\left(\frac{5 a_{0}}{80^{k}}+\frac{5}{40^{k}} a_{1}+\frac{5}{20^{k}} a_{2}+\frac{5^{2}}{10^{k}} a_{3}\right) \\
& v_{0}=-R\left(\frac{a_{0}}{16}+\frac{a_{1}}{8}+\frac{a_{2}}{4}+\frac{a_{9}}{2}\right) \\
& v_{0}=-\frac{R_{f}}{16}\left(2^{0} a_{0}+2^{1} a_{1}+2^{2} a_{2}+2^{3} a_{3}\right) \\
& -12^{v} \leqslant v_{0} \leqslant 0 \Rightarrow \frac{R_{f}}{16}\left(2^{0} \times 1+2 \times 1+2^{2} \times 1+2^{3} \times 1\right)= \\
& =\frac{15 R_{f}}{16}=12 \quad \text { when } a_{0}=a_{1}-a_{2}=a_{3}=1 \text { we } \\
& \Rightarrow R_{f}=12.8 \mathrm{k} \Omega \\
& \text { have the peak value at } v_{0} . \\
& 2.44
\end{aligned}
$$

a) $\frac{v_{0}}{v_{i}}=1=1+\frac{R_{2}}{R_{1}} \Rightarrow R_{2}=0, R_{1}=10 \mathrm{k} \Omega$
b) $\frac{v_{0}}{v_{i}}=2=1+\frac{R_{2}}{R_{1}} \Rightarrow R_{1}=R_{2}=10 \mathrm{~K} \Omega$ cont.
c) $\frac{v_{0}}{v_{i}}=101 \% / v=1+\frac{R_{2}}{R_{1}} \Rightarrow$ if $R_{1}=10 \Omega \Rightarrow R_{2}=1 M$
d)

$$
\text { d) } \frac{v_{i}}{v_{i}}
$$

2.45

2.46

$U_{+}=V_{-}=V=R \times i, i=100 \mu \mathrm{~A}$ when $V=10^{V^{\circ}}$
$\Rightarrow R=\frac{10}{0.1 \mathrm{~mA}}=100 \mathrm{k} \Omega$
As indicated, i only depends on R and V and the meter resistance does net affect i.

2.47

Refer to the circuit in P2.47:
a) using superposition, we first set $v_{p_{1}}=v_{p_{2}}=\cdots=0$ The output voltage that results in response to $v_{N_{1}}, v_{N_{2}}, \ldots v_{N_{n}}$ is: $v_{N_{N}}=-\left[\frac{R_{F}}{R_{N_{1}}} v_{N_{1}}+\frac{R_{F}}{R_{N_{2}}} v_{N_{2}}+\cdots+\frac{R_{f}}{R_{N_{1}}} V_{N}\right]$

Then we set $U_{N_{1}}=U_{N_{2}} \cdots \cdots=0$, then:
$R_{N}=R_{N_{1}}\left\|R_{N_{2}}\right\| R_{N_{3}}\|\cdots\| R_{N_{h}}$ The circuit simplifies to:
$v_{\varphi p}=\left(1+\frac{R_{f}}{R_{N}}\right) \times$

$$
\begin{gathered}
v_{o p}=\left(1+\frac{R_{f}}{R_{N}}\right)\left(v_{P_{1}} \frac{R_{p}}{R_{P_{1}}}+v_{P_{2}} \frac{R_{P}}{R_{P_{2}}} \cdots+\frac{R_{p}}{R_{P_{n}}} v_{P_{n}}\right) \\
\text { where } \\
R_{p}=R_{p_{1}}\left\|R_{p_{2}}\right\| \cdots \| R_{P_{n}}
\end{gathered}
$$

when all inputs are present:
$v_{0}=v_{o N}+v_{o p}=-\left(\frac{R_{f}}{R_{N_{1}}} v_{N_{1}}+\frac{R_{f}}{R_{N_{2}}} v_{N_{2}}+\cdots\right)_{+}$

$$
\left(1+\frac{R_{f}}{R_{N}}\right)\left(\frac{R_{P}}{P_{P_{1}}} v_{N_{1}}+\frac{R_{P}}{R_{P_{2}}} v_{N_{2}}+\cdots\right)
$$

b) $u_{0}=-2 v_{N_{1}}+v_{p_{1}}+2 v_{p_{2}}$
$\frac{R_{C}}{R_{N_{1}}}=2 \quad R_{N_{1}}=10 \mathrm{~K} \Omega \rightarrow R_{F}=20 \mathrm{k} \Omega$
$\left(1+\frac{R_{f}}{R_{N}}\right)\left(\frac{R_{P}}{R_{P_{1}}}\right)=1 \Rightarrow 3 \frac{R_{P}}{R_{P_{1}}}=1 \Rightarrow R_{P_{2}}=\frac{R_{P_{1}}}{2}$
$\left(1+\frac{R f}{R_{N}}\right)\left(\frac{R_{P}}{R_{P_{2}}}\right)-2 \Rightarrow 3 \frac{R_{P}}{R_{P_{2}}}=2 \Rightarrow R_{P_{2}}=\frac{R_{P_{1}}}{2}$
where $R_{p}=\frac{R_{p_{1}} \times R_{p_{2}}}{R_{p_{1}}+R_{p_{2}}}$ (ignoring $R_{p_{q}}$)
Note that if the results from the last 2 constraints differ, we would use au additional resistor connected from the positive input to ground. ($R_{\rho_{\theta}}$)

2.48

$v_{0}=v_{I 1}+3 v_{12}-2\left(v_{13}+3 v_{I 4}\right)$
Refer to P2.47.
$R_{F}=2$ if $R_{N_{3}}=10 \mathrm{k} \Omega \Rightarrow R_{F}=20 \mathrm{k} \Omega$
$\frac{R_{f}}{R_{N+1}}=6 \Rightarrow R_{N / 4}=\frac{20}{6}=3.3^{\mathrm{k} \Omega}$
$R_{N}=R_{N 3} \| R_{N 4}=10 \mathrm{~K} / / 3.3^{\mathrm{K}}=2.48 \mathrm{k} \Omega$
$\left(1+\frac{R_{E}}{R_{N}}\right) \frac{R_{P}}{R_{0^{\prime}}}=1 \Rightarrow\left(1+\frac{20}{2.48}\right) \frac{R_{P}}{R_{P}=R_{1}} \Rightarrow 1 \Rightarrow 9.06 R_{P}=R_{P_{1}}$
$R_{P}=R_{P_{1}}\left\|R_{2}\right\| R_{P_{4}} \Rightarrow R_{p}=\frac{1}{\frac{1}{R_{P_{1}}}+\frac{1}{R_{P_{2}}}+\frac{1}{R_{P Q}}}$
$\left(1+\frac{R_{F}}{R_{N}}\right) \frac{R_{P}}{R_{P_{2}}}=3 \Rightarrow 9.06 \frac{R_{P}}{R_{P_{2}}}=3 \Rightarrow R_{P_{2}} \propto 3 R_{P}$
$R_{p_{1}} / / R_{p_{2}}=\frac{9 \times 3 R_{P_{p}}}{9+3} 2.25 R_{p}, R_{p}=2.25 R_{p} \| R_{p_{p}}$

2.49

$v_{+}=v_{1} \frac{R_{4}}{R_{3}+R_{4}}=v$.
$\frac{v_{-}}{R_{1}}=\frac{v_{2}-v_{2}}{R_{2}} \Rightarrow v_{0}=v_{-}\left(1+\frac{R_{2}}{R_{1}}\right)$
from the two above equations :

$$
\frac{v_{0}}{v_{r}}=\left(1+\frac{R_{2}}{R_{1}}\right)\left(\frac{R_{4}}{R_{3}+R_{4}}\right)=\frac{1+R_{2} / R_{1}}{1+R_{3} / R_{4}}
$$

2.50

Refer to Fig. 2.50 . Setting $v_{2}=0$, we obtain
the output component due to v_{1} as:
$v_{c_{1}}=-20 \mathrm{~V}$
Setting $u_{1}=0$, we obtain the output component due to v_{2} as:
$v_{02}=v_{2}\left(1+\frac{20 R}{R}\right)\left(\frac{20 R}{20 R+R}\right)=20 v_{2}$
The total output voltage is ,
$v_{0}=v_{0_{1}}+v_{02}=20\left(v_{2}-v_{1}\right)$
For $v_{1}=10 \operatorname{Sin} 2 \pi \times 60 t-0.1 \operatorname{Sin}(2 \pi \times 1000 t)$
$v_{2}=\operatorname{cosin} 2 \pi \times 60 t+0.1 \operatorname{Sin}(2 \pi \times 1000 t)$
$v_{0}=4 \operatorname{Sin}(2 \pi \times 1000 t)$

2.51

$\frac{v_{0}}{v_{1}}=1+\frac{R_{2}}{R_{1}}=1+\frac{(1-x)}{x}=1+\frac{1}{x}-1=\frac{1}{x}$

2.52

2.53

a) Source is connected directly.
$u_{0}=10 \times \frac{1}{101}=0.099 \mathrm{~V}$

b) inserting a buffer
$v_{0}=10 \mathrm{~V}$
$i_{C}=\frac{10 \mathrm{~V}}{1 \mathrm{~K}}=10 \mathrm{~mA}$

Source is 0 .
The load current i comes from the power supply of the op -ane.

2.54

A (v / v)	1000	100	10
$v_{0}(v / v)$	0.999	0.990	0.909
$\frac{v_{i}}{\text { Gain Error }}$	-0.1%	-1%	-9.1%

2.55

for an inverting amplifier:
$R_{i}=R_{1} \quad, G=\frac{-R_{2}}{R_{1}}$
for a non-inverting amplifier:
$R_{i}=\infty \quad G=1+\frac{R_{2}}{R_{1}}$
$\begin{array}{ccccc}\text { Case } \text { coin }^{y / y} & R_{\text {in }} & R_{1} & R_{2} \\ a & -10 & 10 \mathrm{~K} & 10 \mathrm{~K} & 100 \mathrm{~K} \\ b & -1 & 100 \mathrm{~K} & 100 \mathrm{~K} & 100 \mathrm{~K} \\ c & -2 & 50 \mathrm{~K} & 50 \mathrm{~K} & 100 \mathrm{~K} \\ d & +1 & \infty & 10 \mathrm{~K} & 10 \mathrm{~K} \\ e & +2 & \infty & 10 \mathrm{~K} & 10 \mathrm{~K} \\ f & +11 & \infty & 10 \mathrm{~K} & 100 \mathrm{~K} \\ g & -0.5 & 10 \mathrm{~K} & 10 \mathrm{~K} & 5 \mathrm{~K}\end{array}$

2.56

$A=50 \mathrm{~V} / \mathrm{V} \quad 1+\frac{R_{2}}{R_{2}}=10 \mathrm{~V} / \mathrm{V}$
if $R_{1}=10 \mathrm{k} \Omega \Rightarrow 90 \mathrm{~K}$
if $R_{1}=10 \mathrm{k} \Omega \Rightarrow R_{2}=90 \mathrm{k}$
According to Eq. $2.11: G=\frac{G_{0}}{G_{i}}=\frac{1+\frac{R_{2}}{R_{1}}}{1+\frac{1+R_{2} / R_{1}}{A}}$
$G=\frac{1+98 / 10}{1+1}=\frac{10}{1.2}=8.33 \mathrm{~V} / \mathrm{k}$
$G=\frac{1+98 / 10}{1+\frac{1+90 / 0}{50}}=\frac{10}{1.2}=8.33 \mathrm{v} / \mathrm{v}$.
In order to compensate the gain drop,
we can shunt a resistor with R_{1}.
Compensated:

$R_{\text {Sh }}: \quad 10=\frac{1+\left(\frac{90}{10}+\frac{90}{R_{s h}}\right)}{1+\frac{1+\frac{90}{10}+\frac{90}{R_{S h}}}{}} \Rightarrow$
$10 \times\left(510 R_{S h}+90 R_{S h}+900\right)=50 \times\left(10 R_{S L}^{50}+90 R_{S h}+900\right)$
$100 R_{\text {Sh }}=3600 \Rightarrow R_{\text {Sh }}=36 \mathrm{~K} \Omega$
if $A=100$ then
$G_{\text {uncompensated }}=\frac{1+\frac{90}{10}}{1+\frac{1+90110}{100}}=\frac{10}{1.1}=9.09 \mathrm{~V} / \mathrm{V}$
$G_{\text {compensated }}=\frac{1+\frac{90}{10}+\frac{90}{36}}{1+\frac{1+\frac{90}{10}+\frac{90}{36}}{100}}=\frac{125}{1.125}=11.1 \mathrm{~V} / \mathrm{V}$
2.57
$G=\frac{G_{0}}{1+\frac{C_{n}}{A}}, \frac{G_{0}-G_{0}}{G_{0}} \times 100=\frac{G_{0} / A \times 100}{1+\frac{C_{0}}{A}} \leqslant x$
or $\frac{1+\frac{G_{0}}{A}}{G_{0} / A} \geqslant \frac{100}{x} \Rightarrow \frac{A}{G_{0}} \geqslant \underbrace{\left(\frac{100}{x}-1\right)}$
$\Rightarrow A \geqslant G_{0} F$ where $F=\frac{100}{x}+\frac{15 \frac{100}{x} F}{x}$

x	0.01	0.1	1	10
F	10^{4}	10^{3}	10^{2}	10

Thus for,
Thus for:

$$
\begin{array}{llllll} \\ x=0.01: & G_{0}(V / v) & 1 & 10 & 10^{2} & 10^{3} \\ A(V) & 10^{4}\end{array}
$$

\[

\]

$\begin{array}{rllllll}x=0.1: & C_{0}(v / v) & 1 & 10 & 10^{2} & 10^{3} & 10^{4} \\ & A(v / v) & 10^{3} & 10^{4} & 10^{5} & 10^{6} & 10^{7}\end{array}$
$\begin{array}{lllllll}x=1: & G_{0}(v / v) & 1 & 10 & 10^{2} & 10^{3} & 10^{4} \\ & A\left(U_{v}\right) & 10^{2} & 10^{3} & 10^{4} & 10^{5} & 10^{6}\end{array}$

$$
\begin{array}{rlllll}
x=10: & G_{0}(v / v) & 1 & 10 & 10^{2} & 10^{3} \\
& A(v / v) & 10 & 10^{2} & 10^{3} & 10^{4}
\end{array} 10^{5}
$$

for non-inverting amplifier, Eq.2.11:

2.59

Refer to Fig . 92.59 , when potentiometer
is set to the bottom :
$v_{0}=v_{+}=-15+\frac{30 \times 20}{20+100+20}=-10.714 \mathrm{v}$
when set to the top: $v_{0}=-15+\frac{30 \times 120}{20}=10.744 \mathrm{~V}$
$\Rightarrow-10.714 \leqslant v_{0} \leqslant+10.714$
pot has 20 tum, each turn, $\Delta v_{0}=\frac{2 \times 10.714}{20}=1.0 \mathrm{FV}$

2.60

Refer to Fig. 2.16. Notice that Similar
to eq. 2.15 we have: $\frac{R_{\mu_{1}}}{R_{3}}=\frac{R_{2}}{R_{1}}=\frac{100}{10}$.
$v_{0}=\frac{R_{2}}{R_{1}} v_{I d} \Rightarrow A=\frac{R_{2}}{R_{1}}=10 \mathrm{~V} / \mathrm{s}$
According to 2.20: $R_{i d}=2 R_{1}=20 \mathrm{k} \Omega$ If $\frac{R_{2}}{R_{1}}, \frac{R_{4}}{R_{3}}$ were different by $\ddot{\%}_{0}$: $\frac{R_{2}}{R_{1}}=0.99 \frac{R_{4}}{R_{3}}$

Refer to eq. 2.19: $A_{c m}=\frac{R_{4}}{R_{4}+R_{3}}\left(1-\frac{R_{2}}{R_{1}} \cdot \frac{R_{3}}{R_{4}}\right)$
$A_{c m}=\frac{100}{100+10}(1-0.99)=0.009$
$C M R R=20 \log \frac{|A d|}{\left|A_{\mathrm{cm}}\right|}$, so let's calculate A
$A_{d}=\frac{v_{0}}{v_{i d}}$ if we apply superposition:
$v_{01}=-\frac{R_{2}}{R_{1}} v_{I_{1}} \quad v_{02}=v_{I_{2}}-\frac{R_{4}}{R_{3}+R_{4}}\left(1+\frac{R_{2}}{R_{1}}\right)$
$v_{0}=v_{0_{2}}+v_{0_{1}}=v_{I_{2}} \frac{R_{4 / R_{3}}}{1+\frac{R_{4}}{R_{3}}}\left(1+\frac{R_{2}}{R_{1}}\right)-\frac{R_{2}}{R_{1}} v_{4}$
Replace $\frac{R_{2}}{R_{t}}=0.99 \frac{R_{4}}{R_{3}} \Rightarrow \frac{R_{2}}{R_{1}}=0.99 \times \frac{100}{10}=9.9$
$v_{0}=v_{12} \frac{10}{1+10}(1+9.9)-v_{I_{1}} 9.9=9.9\left(v_{12}-v_{1}\right)$
$\frac{v_{0}}{v_{d}}=9.9=A_{d} \Rightarrow C M R R=20 \log \frac{9.9}{0.009}=60.8$
$C M R R=60.8$

2.61

If we assume $R_{3}=R_{1}, R_{4}=R_{2}$, then
eq. 2.20: $R_{i d}=2 R_{1} \rightarrow R_{1}=\frac{20}{2}-10 \mathrm{k} \Omega$
(Refer to Fig. 2.16)
a) $A_{d}=\frac{R_{2}}{R_{d}}=1 \mathrm{~V} / \mathrm{U} \rightarrow R_{2}=10 \mathrm{k} \Omega$ $R_{1}=R_{2}=R_{3}=R_{4}=10 \mathrm{k} \Omega$
b) $\begin{aligned} A_{d}=\frac{R_{2}}{R_{1}}=2 \mathrm{~V} / v \Rightarrow & R_{2}=20 \mathrm{k} \Omega=R_{4} \\ R_{1} & =R_{3}=10 \mathrm{k} \Omega\end{aligned}$
c) $\begin{aligned} & A_{d}=\frac{R_{2}}{R_{1}}=100 \mathrm{v} / \mathrm{v} \Rightarrow R_{2}=1 \mathrm{M} \Omega=R_{4} \\ & R_{1}=R_{3}=10 \mathrm{k} \Omega\end{aligned}$

$$
2.62
$$

Refer to Fig P2.62:

Considering that $v_{-}=v_{+}$:
$v_{1}+\frac{v_{0}-v_{1}}{2}=\frac{v_{2}}{2} \Rightarrow v_{0}=v_{2}-v_{1}$
v_{1} only: $R_{I}=\frac{v_{i}}{I}=R$

v_{2} only: $R_{r}=\frac{v_{2}}{I}=2 R$
v_{s} between 2 terminals:
$R_{I}=\frac{v}{I}=2 R$
$v_{+}=v_{-}=0$

v_{3} connected to bath $v_{1} \& v_{2}$:
$R_{I}=\frac{U}{I}=R$
$v_{+}=U_{U}^{I}=\frac{v_{i}}{2}$

2.63
$v_{+}=v_{C M} \frac{R_{4}}{R_{3}+R_{4}}$
$v_{+}=v_{-}$
$v_{+}=v_{-}$
$i_{2}=\frac{v_{c \mu}}{R_{3}+R_{4}}$

$i_{1}=\frac{v_{C M}}{R_{1}}-\frac{v_{C M} R_{4}}{R_{3}+R_{4}} \times \frac{1}{R_{1}}=\frac{v_{M M}}{R_{1}} \frac{R_{3}}{R_{3}+R_{4}}$
$i=i_{1}+i_{2}=\frac{V_{C M}}{R_{1}} \frac{R_{3}}{R_{3}+R_{4}}+\frac{V_{i M}}{R_{3}+R_{4}}$
$\frac{1}{R_{I}}=\frac{i}{V_{C M}}=\frac{1}{R_{1}} \frac{1}{\frac{R_{4}+1}{R_{3}}+\frac{1}{R_{3}+R_{4}} .}$
if we replace $\frac{R_{4}}{R_{3}}$ with $\frac{R_{2}}{R_{1}}:\left(\frac{R_{4}}{R_{3}}=\frac{R_{2}}{R_{1}}\right)$ $\frac{1}{R_{I}}=\frac{1}{R_{1}+R_{2}}+\frac{1}{R_{3}+R_{4}} \Rightarrow R_{3}=\left(R_{3}+R_{2}\right) \|\left(R_{3}+R_{4}\right)$

2.64

In order to have an ideal differential amp:

$$
\frac{R_{5}}{R_{1}}+1=\frac{R_{5}}{R_{3}}+1 \Rightarrow R_{1}=R_{3} \Rightarrow R_{2}=R_{4}
$$

2.65

Refer to eq. 2.19 and Fig. P2.62:
$A_{\text {CM }}=\frac{v_{0}}{v_{\text {LCM }}}=\frac{R_{4}}{R_{3}+R_{4}}\left(1-\frac{R_{2}}{R_{1}} \frac{R_{3}}{R_{4}}\right)$
The worst case is when Arm has its maximum value.
$A_{c m}=\frac{1}{\frac{R_{3}}{R_{4}}+1}\left(1-\frac{R_{2}}{R_{1}} \frac{R_{3}}{R_{4}}\right)$
Max $A_{c m} \Rightarrow \frac{R_{3}}{R_{4}}$ has to be at its minimise
value and also ${ }^{R_{4}} \frac{R_{2}}{R_{1}}$ has to be minimums.
$\frac{100-x}{100+x} \leqslant \frac{R_{3}}{R_{4}} \leqslant \frac{100+x}{100-x} \quad \frac{100-x}{100+x} \leqslant \frac{R_{2}}{R_{1}} \leqslant \frac{100+x}{100-x}$
so if $\quad \frac{R_{3}}{R_{4}}=\frac{100-x}{100+x} \quad \& \quad \frac{R_{2}}{R_{1}}=\frac{100-x}{100+x}$
$A_{\text {cm Max }}=\frac{1}{\frac{100-x}{100+x}+1}\left(1-\frac{100-x}{100+x} \frac{100-x}{100+x}\right)$
A_{cm} Mar $=\frac{1}{200} \frac{(100+x)^{2}-(100-x)^{2}}{100+x}=\frac{2 x}{100+x} \simeq \frac{\sim x}{50}$

x	0.1	1	5
$A_{\text {cm } \text { Max }}$	0.002	0.02	0.1

$C M R R=20 \log \left|\frac{A d}{A_{\text {cm }}}\right|$. Now we have to calculate Ad based on values we chose for $R-R_{4}$ that gave us Am Max.
$R_{2}=R_{3}=100-x \quad R_{1}=R_{4}=100+x$
$v_{0}=v_{01}+v_{02}$ by applying superposition
$v_{0}=-\frac{R_{2}}{R_{1}} v_{1}+v_{2} \frac{R_{4}}{R_{3}+R_{4}}\left(1+\frac{R_{2}}{R_{1}}\right)$
$v_{0}=-\frac{100-x}{100+x} v_{1}+v_{2}+\frac{100+x}{200}\left(1+\frac{100-x}{100+x}\right)$
$v_{0}=\frac{-100-x}{100+x} v_{1}+v_{2}$
if we consider $\frac{100-x}{100+x} \simeq 1 \Rightarrow \frac{v_{0}}{v_{i d}} \simeq 1$

$$
C M R R=20 \log \frac{A d}{A E m}=20 \log \frac{1}{1 / 50}=20 \log \frac{50}{x}
$$

2.66

Refer to Fig. 2.16 and eq. 2.19:
$A_{c m}=\frac{R_{u}}{R_{3}+R_{4}}\left(1-\frac{R_{2}}{R_{1}} \frac{R_{3}}{R_{4}}\right)$
In order to calculate A_{d}, we use superposition principle:
$v_{0}=v_{01}+v_{02}-\frac{-R_{2}}{R_{1}} v_{1}+v_{2} \frac{R_{4}}{R_{3}+R_{4}}\left(1+\frac{R_{2}}{R_{1}}\right)$
then replace

$$
v_{2}=v_{c m}+\frac{2 u d}{2}
$$

$v_{0}=\frac{-R_{2}}{R_{1}} v_{c m}+\frac{R_{2}}{R_{1}} v_{d} /_{2}+v_{c m} \frac{1+R_{2} / R_{1}}{1+\frac{R_{3}}{R_{4}}}+\frac{v_{3}}{2} \frac{1+R_{2 / R_{1}}}{1+\frac{R_{3}}{R_{4}}}$
$v_{0}=\underbrace{\frac{R_{2}}{2 R_{1}}\left[1+\frac{R_{1} / R_{2}+1}{R_{2} / R_{4}+1}\right]}] v_{d}+\frac{R_{2}}{R_{1}}\left[-1+\frac{R_{1} / R_{2}+1}{R_{3 / R_{4}}+1}\right] \mathrm{cm}_{\mathrm{cm}}$
$C M R R=20 \log \left|\frac{A_{d}}{A_{c m}}\right|=20 \log \frac{\frac{R_{2}}{2 R_{1}}\left[1+\frac{R_{1} R_{2}+1}{R_{3} / R_{4}+1}\right]}{\frac{1}{R_{2}}\left(1-\frac{R_{2}}{R_{1}} \frac{R_{3}}{R_{4}}\right)}$
$M R R=20 \log \left|\frac{\frac{1}{2} \frac{R_{2}}{R_{1}}\left[2+\frac{R_{1}}{R_{2}}+R_{2}+R_{4}\right]}{1-\frac{R_{2}}{R_{1}} \cdot \frac{R_{3}}{R_{4}}}\right|$
$C M R R=20 \log \left|\frac{1+\frac{1}{2} \frac{R_{1}}{R_{2}}+\frac{1}{2} \frac{R_{3}}{R_{4}}}{\frac{R_{1}}{R_{2}}-\frac{R_{3}}{R_{4}}}\right|$
for worst case, or minimum $C M R R$ we have
to maximize the denominator, whichmeans:
$R_{1}=R_{n}(1+\varepsilon) \quad R_{3}=R_{3 n}(1-\varepsilon)$
$R_{2}=R_{2 n}(1-\varepsilon) \quad R_{4}=R_{u^{*}}(1+\varepsilon)$
also: $\frac{R_{2 n}}{R_{1 n}}=\frac{R_{4 n}}{R_{3 n}}=K$
$C M R R=20 \log \left|k \frac{1+\frac{1}{2 k} \frac{1+\varepsilon}{1-\varepsilon}+\frac{1}{2 k} \frac{1-\varepsilon}{1+\varepsilon}}{\frac{1+\varepsilon}{1-\varepsilon}-\frac{1-\varepsilon}{1+\varepsilon}}\right|$ $C M R R=20 \log \left|\frac{k\left(1-\varepsilon^{2}\right)+\left(1+\varepsilon^{2}\right)}{4 \varepsilon}\right| \simeq 20 \log \left|\frac{k+1}{4 \varepsilon}\right|$
for $\varepsilon^{2} \ll 1$.
if $K=A_{l_{\text {deal }}}=100 \quad, \varepsilon=0.01$
$C M R R=20 \log \frac{101}{0.04}-68 \mathrm{db}$
2.67
$A_{d}=100$
we assume $\frac{R_{2}}{R_{1}}=\frac{R_{4}}{R_{3}}$ then $A_{4}=\frac{R_{2}}{R_{1}}=K$
$R_{i d}=2 R_{1}=20 \mathrm{k} \Omega \rightarrow R_{1}=10 \mathrm{k} \Omega$
$C M R R=80 d b=20 \log \frac{A_{d}}{A_{c m}} \rightarrow \frac{A_{d}}{A_{c m}}=10^{4}$
$\Rightarrow A_{\mathrm{cm}}=0.01$
$A_{d}=100=\frac{R_{2}}{R_{1}} \Rightarrow R_{2}=1 M \Omega$
$\begin{array}{ll}\text { Refer to } P^{2} .66: \quad & C M R R=20 \log \frac{k+1}{4 \varepsilon} \\ C M R R=10^{4}\end{array}$
$\Rightarrow E=10^{-2} \times 0.25$
we assumed earlier $\frac{R_{2}}{R_{1}}=\frac{R_{4}}{R_{3}}$ then
$\frac{R_{u}}{R_{3}} \simeq 100 \Rightarrow$ if $R_{3}=10 \mathrm{~K} \pm \varepsilon$

$$
\begin{aligned}
\Rightarrow R_{4} & =1 M \Omega \pm \varepsilon \\
R_{2} & =1 M \Omega \pm \varepsilon \\
R_{1} & =10 \mathrm{~K}_{ \pm} \varepsilon
\end{aligned} \quad \varepsilon=0.25 \%
$$

2.68

Referto Fig. $P 2.68$ and Eq. 2.19 :
$A_{c_{m}}=\frac{R_{4}}{R_{3}+R_{4}}\left(1-\frac{R_{2}}{R_{1}} \frac{R_{3}}{R_{4}}\right)=\frac{100}{100+100}\left(1-\frac{100.100}{100.100}\right)$
$A_{c_{m}}=0$
Refer to $2.17: \quad \frac{R_{2}}{R_{1}}=\frac{R_{4}}{R_{3}}$
$\Rightarrow A_{d}=\frac{R_{2}}{R_{1}}=1$
b) Since $A_{\text {cm }}=0$, then if we apply v_{cm} to $v_{I 1}$ and $v_{L_{2} \text { ' }}$ $v_{0}=0$.
Therefore, $V_{A}=v_{\mathrm{cm}} \frac{100}{100+100}$
$\begin{aligned} v_{A} & =\frac{v_{\text {cm }}}{2} \\ y, v_{B} & =\frac{v_{\text {cm }}}{2}\end{aligned}$
Similarly, $V_{B}=\frac{\text { Vim }}{2}$
We know
$V_{A}=V_{B}$$\quad$ and $-2.5 \leqslant V_{A} \leq 2.5$
$\Rightarrow-5 \leqslant \mathrm{v}_{\mathrm{cm}} \leqslant 5$
C) we apply the

$v_{0_{1}}$ is the output voltage when $v_{I_{2}}=0$
$v_{o_{2}}$ is the output voltage when $v_{r_{1}}=0$
$v_{0}=v_{01}+v_{0_{2}}$
$v_{a}=\frac{-R_{2}}{R_{1}} v_{I_{1}}=-v_{I_{1}}$
$\left.\begin{array}{l}v_{\mathrm{O}_{2}}=v_{I_{2}} \frac{100 \mathrm{~K} \Omega / 110^{k}}{v_{02}=v_{I_{2}} \times 1}\left(1+\frac{100 \mathrm{~K}}{100 \mathrm{k} / 110 \mathrm{k}+100}(110 \mathrm{~K}\right.\end{array}\right)$
$v_{O_{2}}=v_{I_{2}}{ }^{\text {a }}$
$\Rightarrow v_{0}=v_{01}+v_{02}=-v_{I_{1}}+v_{\Sigma_{2}} \rightarrow A_{d}=1$
Now we calculate Arm:

$v_{B}=v_{\text {LCM }} \frac{100 k 1110 k}{100 k 1110 k+100 k} \quad, v_{A}=v_{B}$
$i_{1}=\frac{v_{\text {LCM }}-v_{A}}{100 \mathrm{~K}}$
$v_{0}=v_{A}-100 k_{\times i_{2}}$ and $i_{2}=i_{1}-i_{3}=i_{1}-\frac{v_{A}}{10 k}$
$v_{0}=v_{A}-100 \mathrm{kxi}+10 \times v_{A}$
$v_{0}=v_{A}-v_{I M}+v_{A}+10 \times v_{A}$
$v_{A}=v_{B} \Rightarrow v_{0}=v_{I C M}\left(-1+12 \frac{100 k \mid 110^{k}}{160 / / 10^{k}+100}\right)$
$\frac{v_{0}}{v_{I C M}}=A_{c \mathrm{CM}}=0$
Now we calculate $v_{\text {rim }}$ range:
$-25 v_{B} \leqslant 2.5 \Rightarrow-2.5 / v_{\mathrm{rcM}} \times \frac{100 \mathrm{k} / 1110^{K}}{100 \mathrm{~K} / 110 \mathrm{~K}+100 \mathrm{k}}<2.5$ $-30^{\circ} \leqslant$ vico $\leqslant 30^{v}$

2.69

Refer to Fig. P2.69; we use superposition:
$v_{0}=v_{01}+v_{02}$
calculate $v_{01}: v_{+}=\frac{\beta v_{01}}{2}=v_{-}$ $\frac{v_{1}-\frac{\beta v_{01}}{2}}{R}=\frac{\frac{\beta v_{01}}{2}-v_{0}}{R} \rightarrow v_{01}=\frac{v_{1}}{\beta-1}$

Calculate $v_{\mathrm{O}_{2}}$:

$$
\begin{aligned}
v_{1}=\frac{v_{02}}{2}=v_{+} & \Rightarrow v_{2}-\frac{v_{02}}{2}=\frac{v_{02}}{2}-\beta v_{02} \\
& \Rightarrow v_{02}=\frac{\frac{v_{2}}{1-\beta}}{1-\beta}
\end{aligned}
$$

$$
v_{0}=v_{01}+v_{02}=\frac{v_{1}}{\beta-1}+\frac{v_{2}}{1-\beta}=\frac{1}{1-\beta}\left(v_{2}-v_{1}\right)
$$

$$
A_{d}=\frac{v_{0}}{v_{2}-v_{1}}=\frac{1}{1-\beta}
$$

$$
A_{d}=10 \mathrm{v} / \mathrm{m}=\beta=0.9=\frac{R_{5}}{R_{5}+R_{6}}
$$

$$
R_{\text {id }}=2 R=2 M \Omega \Rightarrow \frac{R=1 M \Omega}{k \Omega}
$$

$$
R_{5}+R_{6} \leqslant \frac{R}{100} \Rightarrow R_{5+} R_{6} \leqslant 10^{\mathrm{k} \Omega}
$$

$$
\begin{aligned}
& R_{5}+R_{6} \leqslant \frac{R}{100} \Rightarrow R_{5+} R_{6} \leq 10 \\
& R_{5}=6.8 \mathrm{~K} \Omega \\
& R_{6}=680 \Omega
\end{aligned}
$$

$$
2.70
$$

$$
v_{+}=v_{-} \text {so we can consider } v_{+}, v_{-} \text {a virtual }
$$

$$
\text { short: } \quad i_{1}=v_{i d} / 2 R_{1} \Rightarrow i_{2}=\frac{v_{i d}}{2 R_{1}}
$$

$$
\begin{aligned}
& i_{1}^{\prime}=i_{2}^{\prime}=\frac{v_{i d}}{2 R_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { then: } i_{2} R_{2}+v_{A B}+\frac{i_{2} R_{2}}{2 R_{1}}=0 \Rightarrow v_{A B}=-\frac{v_{i d}}{R_{1}} R_{2} \\
& i_{1}=v_{i d} \times R_{2}
\end{aligned}
$$

$$
i_{G}=\frac{U_{i d}}{R_{G}} \times \frac{R_{2}}{R_{1}}
$$

$$
\begin{aligned}
i_{3} & =i_{2}+i_{G}=\frac{v_{i d}}{2 R_{1}}+\frac{v_{i d}}{R_{G}} \frac{R_{2}}{R_{1}} \\
i_{3}^{\prime} & =i_{G}+i_{2}^{\prime}=i_{3} \\
\Rightarrow v_{0} & =-\left[i_{3}^{\prime} R_{2}+v_{B A}+i_{3} R_{2}\right] \\
v_{0} & =-\left[2 i_{3} R_{2}+v_{B A}\right] \\
v_{0} & =-\left[\frac{2 v_{i d}}{2 R_{1}} R_{2}+2 v_{i} \frac{R_{2}}{R_{1}} \frac{R_{2}}{R_{G}}+\frac{v_{i d}}{R_{1}} R_{2}\right] \\
& \frac{v_{0}}{v_{d d}}=A_{d}=-2 \frac{2 R_{2}}{R_{1}}\left[1+\frac{R_{2}}{R_{G}}\right]
\end{aligned}
$$

2.71

a)

Refer to Eq. 2.17 : $A_{d}=\frac{R_{2}}{R_{1}}=1$. Connect C and together.

$A_{d}=1$
b) $\frac{v_{0}}{v_{i}}=-1 \frac{v}{v}$
ii) $\frac{v_{0}}{v_{i}}=+1 v / v$

iii) $\frac{v_{0}}{v_{i}}=+2 \mathrm{~V} / \mathrm{v}$

iv) $\frac{v_{0}}{v_{i}}=+\frac{1}{2} v / v$
$v_{+}=\frac{v_{i}}{2}=v_{0}$
$\Rightarrow \frac{v_{0}}{v_{i}}=\frac{1}{2}$

2.72

$i=3+0.04 \sin \omega t-(3-0.04 \operatorname{Sin} \omega t)=0.08 \operatorname{Sin} \omega t, \mathrm{~mA}$ $v_{A}=3+0.04 \sin \omega t+50 k \times i=3+4.04 \operatorname{Sin} \omega t, V$
$V_{B}=3-0.04 \sin \omega t-50 k_{x} i=3-4.04 \sin \omega t, V$ $v_{c}=v_{D}=\frac{1}{2} v_{B}=1.5-2.02 \sin \omega t, v$ $u_{0}=v_{B}-v_{A}=-8.08 \sin \omega t, V$

2.73

Refer to Fig. 2.20.a.
The gain of the first stage is: $\left(1+\frac{R_{2}}{R}\right)=101$ If the opamps of the first stage saturate at $114 v:-14 \leqslant v_{1} \leqslant+14 v \Rightarrow-14 \leqslant 101 v_{i \mathrm{~cm}}^{6}+14$ $\Rightarrow-0.14 \leqslant v_{\mathrm{iCm}} \leqslant 0.14$

As explained in the text, the disadvantage of circuit in Fig. 2.20.a is that $v_{\text {LCM }}$ is amplified by a gain equal to $v i d,\left(1+\frac{R_{2}}{R_{1}}\right)$ in the first stage and therefore a very
small r lcm range is acceptable to avoid saturation.
b) In Fig. 2.20 b , when $v_{\text {reM }}$ is applied, v for both $A_{1} \& A_{2}$ is the some and therefore no current flows through $2 R_{1}$. This means voltage at the out put of A_{1} and A_{2} is the
souse as V roM.
$-14 \leqslant v_{0} \leqslant 14 \Rightarrow-14 \leqslant v_{\text {LCM }} \leqslant 14$
This circuit allows for bigger range of V imam.
2.74
$v_{i 1}=v_{c m}-v_{d / 2}$
$v_{i 2}=v_{\mathrm{cm}}+v_{\mathrm{c} / 2}$
Refer to fig. 2,20.a.
output of the first stage: $\left(1+\frac{R_{2}}{R_{1}}\right)\left(v_{\mathrm{cm}}-v_{d /}\right)$
$v_{0_{1}}=\left(1+\frac{R_{2}}{R_{1}}\right)\left(v_{\mathrm{cm}}-v_{\mathrm{d} / 2}\right)$
$v_{02}=\left(1+\frac{R_{2}}{R_{1}}\right)\left(v_{\mathrm{cm}}+v_{d / 2}\right)$
$v_{02}-v_{0_{1}}=\left(1+\frac{R_{2}}{R_{1}}\right) v_{d} \Rightarrow v_{d(1)}=1+\frac{R_{2}}{R_{1}}$
$\frac{v_{02}+v_{01}}{2}=\left(1+\frac{R_{2}}{R_{1}}\right) v_{\mathrm{cm}} \Rightarrow A_{\mathrm{cm}}(1)=1+\frac{R_{2}}{R_{1}}$
$C M R R=20 \log \left|\frac{A_{d}}{A_{c m}}\right|=0 \quad$ (First stage)
Now Consider fig. 2.20.b
$v_{01}=v_{i 1}+R_{i_{2}} \times \frac{\left(v_{i 1}-v_{i 2}\right)}{2 R_{1}}$
$v_{01}=v_{c m}-v_{d / 2}+\frac{R_{2}}{2 R_{1}}\left(-v_{d}\right)$
cont.
$v_{01}=v_{c m}-\frac{v_{d}}{2}\left(1+\frac{R_{2}}{R_{1}}\right)$
$v_{02}=v_{i 2}-R_{2} \times \frac{v_{i 1}-v_{i 2}}{2 R_{2}}=v_{c m}+\frac{v_{d}}{2}+R_{2} \cdot \frac{v_{d}}{2 R_{1}}$
$v_{v_{2}}=v_{i m}+\frac{v_{d}}{2}\left(1+\frac{R_{2}}{R_{1}}\right)$
$v_{o_{2}}-v_{0_{1}}=v_{d}\left(1+\frac{R_{2}}{R_{1}}\right) \quad \Rightarrow A_{d(1)}=1+\frac{R_{2}}{R_{1}}$
$\frac{v_{02}+v_{01}}{2}=v_{\mathrm{cm}} . \quad \Rightarrow A_{\mathrm{cm}}(1)=1$
$C M R R=20 \log \left|\frac{A_{d}}{A_{m}}\right|=20 \log \left(1+\frac{R_{2}}{R_{1}}\right)$
In 2.20 .6 , the common mode voltage is not amplified and it is only propagated to the outputs of the first stage.

2.75

Refer to eq. 2.22:
$A_{d}=\frac{R_{4}}{R_{3}}\left(1+\frac{R_{2}}{R_{1}}\right)=\frac{100^{k}}{100 \mathrm{~K}}\left(1+\frac{100 \mathrm{~K}}{5^{k}}\right)=21 \mathrm{~V} / \mathrm{J}$ $A_{c m}=0$
$C M R R=20 \log \left|\frac{A_{d}}{A_{\text {cm }}}\right|=\infty$
If all resistors are $\pm 1 \%$:
$A_{d} \simeq 21$
In order to calculate $A_{c m}$, apply $V_{C_{m}}$ to both inputs and note that $v_{\text {can }}$ will appear at both output terminals of the first stage. Now we con evaluate v_{0} by analyzing the second stage as was done in problem e 2.65. In $P 2.65$ we showed that if each 100 K resistor has $\pm x \%$ tolerance, $A_{\text {cm }}$ of the differential amplifier is: $A_{c m}=\frac{v_{0}}{v_{2 m}}=\frac{x}{50}$. Therefore the overall $A_{\text {cm }}$ is also $\frac{x}{5}$.
$x=1 \Rightarrow A_{\mathrm{cm}}=\frac{1}{50}=0.02$
$C M R R=20 \log \frac{21}{0.02}=60 \mathrm{db}$
IF $2 R_{1}=1 \mathrm{R} \Omega: A_{d}=\frac{R_{4}}{R_{g}}\left(1+\frac{R_{2}}{R_{1}}\right)=201 \mathrm{~V} / \mathrm{V}$ $A_{c m}=0.02$ unchanged
$C M R R=20 \log \frac{201}{0.02}=80 \mathrm{db}$
Conclusion: Large $C M R R$ com be achieved by
having relatively Large A_{d} in the first stage.

2.76

$$
\begin{aligned}
& \begin{array}{l}
A_{d_{d 2}} \text { of the second stage is } \frac{R_{4}}{R_{3}}=0.5 \\
R_{4}=100 \mathrm{k} \Omega, R_{3}=200 \mathrm{k} \Omega
\end{array} \\
& \text { we use a series configuration of } R_{\left(F_{i x}\right. \text { and }} \text { and } \\
& R_{1} \text { (pot): } R_{1}=100 \mathrm{kpot} \\
& \text { Minimum gain }=0.5\left(1+\frac{R_{2}}{R_{1} R_{1}}\right)=0.5\left(1+\frac{R_{2}}{\frac{10 d^{*}+R_{1}}{2}}\right) \\
& 1 \leqslant A_{d} \leqslant 100 \Rightarrow 1=0.5\left(1+\frac{2 R_{1}^{R_{1}}}{R_{F}+100 \mathrm{~K}}\right) \\
& \Rightarrow R_{1 f}+100=2 R_{2} \text { (1) } \\
& \begin{array}{l}
\text { Maximum gain }=100=0.5\left(1+\frac{R_{2}}{R_{1} / 2 / 2}\right) \Rightarrow \\
2 R_{2}=199 R_{15}
\end{array} \\
& \text { (1) , (2) } \leadsto R_{F F}=0.505 \mathrm{k} \Omega \simeq 0.5 \mathrm{k} \Omega \\
& R_{2}=50.25 \mathrm{k} \Omega=50 \mathrm{k} \Omega
\end{aligned}
$$

a) $\frac{v_{B}}{v_{A}}=1+\frac{20}{10}=3 \mathrm{~V} / V, \frac{v_{C}}{v_{A}}=-\frac{30}{10}=-3 / v$ b) $v_{0}=v_{B}-v_{C}=6 \quad v_{A} \Rightarrow \frac{v_{0}}{v_{A}}=6 \mathrm{v} / \mathrm{v}$ $\overbrace{t}^{v_{A}(v)}$

c) v_{B} and v_{C} can be $\pm 14^{\prime \prime}$ or $28 \mathrm{O} P-\mathrm{P}$.

$$
\begin{aligned}
& -28 \leqslant v_{0} \leqslant 28 \text { or } 56 \mathrm{pp.p} \\
& u_{\text {rms }}=19.8 \mathrm{~V}=\frac{28}{\sqrt{2}}
\end{aligned}
$$

2.78

Refer to Fig. P. 2.78.a:
Since the inputs of the op -amp donot draw any current, v_{I} appears across R :
$i_{0}=\frac{v_{T}}{R}$
Fig. P2.78.B

$v_{t}=v_{1}-v_{2}$
V_{1} only: $\quad V_{B}=\frac{V_{D}}{2}=\frac{z_{i} i_{01}}{2}$
$\frac{V_{1}-\frac{z_{L} i_{01}}{2}}{R_{1}}=\frac{z_{1} i_{Q_{2}}-i_{0}\left(z_{L}+R\right)}{R_{1}}$
$\rightarrow V_{1}=i_{1} R \Rightarrow i_{01}=\frac{v_{1}}{R}$
Now if only $\left(v_{2}\right)$ is applied:
$v_{B}=-\frac{-v_{2}+z_{L} i_{02}}{2} \quad, V_{A}=\frac{i_{02} \times\left(R_{+} z_{L}\right)}{2}$
$v_{A}=v_{B} \Rightarrow-v_{2}+z_{L} i_{O_{2}}=i_{O_{2}} R+i_{O_{2}} z_{L}$
$-v_{2}=i_{02} R \Rightarrow i_{0_{2}}=\frac{-v_{2}}{R}$
current die e to both sources is
The $i_{0} t_{\text {al }}=i_{01}+i_{02}=\frac{v_{1}}{R}-\frac{v_{2}}{R}=\frac{v_{s}}{R}$
The circuit in Figure $P 2.78(a)$ has ideally infinite
input resistance, and it requires that both terminals of
z_{L} be availabe, while the other circuit has finite input resistance with one side of Z_{L} grounded. 2.79

2.80

Eq. $2.25: A=\frac{A_{0}}{1+j \omega / \omega_{b}} \Rightarrow|A|=\frac{\mid A \cdot 1}{\sqrt{1+\left(\frac{f}{F_{b}}\right)^{2}}}$
$A_{0}=86 \mathrm{db}, A=40 \mathrm{db} @ f=100 \mathrm{kHz}$
$\begin{aligned} 20 \log \sqrt{1+\left(\frac{F}{F_{b}}\right)^{2}} & =20 \log \frac{A_{d} \mid}{|A|}=20 \log A_{0}-20 \log A \\ & =86-40=46 d b\end{aligned}$
$\left.1+\left(\frac{100_{b}}{F_{b}}\right)^{K H z}\right)^{2}=(199.5)^{2} \Rightarrow F_{b}=0.501 \mathrm{kHz}$

$f_{t}=A_{0} f_{b}=\underbrace{1.995 \times 10^{4}}_{86 \mathrm{db}} \times 501=\frac{f^{b}=501 \mathrm{Mz}}{9.98 \mathrm{MHz} \simeq 10 \mathrm{MHz}}$
2.81

$f_{t}=A_{0} f_{b}$
$5.1 \times 10^{3}=\frac{8.3 \times 10^{3}}{\sqrt{1+\left(\frac{100 \mathrm{KH}}{f_{b}}\right)^{2}}} \Rightarrow 1+\left(\frac{100^{\mathrm{kHz}}}{f_{b}}\right)^{2}=2.65$
$F_{b}=60.7 \mathrm{kHz}$
$f_{t}=A_{0} f_{b}=8.3 \times 10^{3} \times 60.7=503 \mathrm{MHz}$

$$
2.82
$$

we have:
$A_{(d,)} 20 d b+A_{(d b)} 20 d b=20 \log 10 \Rightarrow A_{b}=10, A$
a) $A_{0}=10 \times 3 \times 10^{5}=3 \times 10^{6} \mathrm{~Hz} \mathrm{~V} / \mathrm{V}$
$A_{0}=10 \times 3 \times 10^{5}=3 \times 10^{6}$
$A=\frac{A_{0}}{1+j c / f_{b}} \Rightarrow\left|1+j f_{f_{b}}\right|=\frac{A_{0}}{A}=10 \Rightarrow \frac{6 \times 10^{2}}{f_{b}}=\sqrt{99}$
$\Rightarrow f_{b}=60.3 \mathrm{~Hz}$
$f_{t}=A_{0} f_{b}=3 \times 10^{6} \times 60.3=180.9 \mathrm{MHZ}$
b) $A=50 \times 10^{5} \mathrm{~V} / \mathrm{v}=A_{0}=10 \times 50 \times 10^{5}=50 \times 10^{6} \mathrm{~V} / \mathrm{v}$ $\left|f+\frac{j f}{f_{b}}\right|=\frac{A_{0}}{A}=10 \Rightarrow \frac{10^{4 z}}{f_{b}}=\sqrt{99} \rightarrow f_{b}=1 \mathrm{~Hz}$
$f_{b}=A_{0} f_{b}=50 \mathrm{MHz}$ $f_{t}=A_{b} f_{b}=50 \mathrm{MHz}$
c) $A=1500 \mathrm{~V} / \mathrm{V} \Rightarrow A_{0}=15000 \mathrm{v} / \mathrm{v}$

$$
\begin{aligned}
& \left|1+\frac{j f}{f_{b}}\right|=10 \Rightarrow \frac{0.1 \times 10^{6}}{f_{b}}=\sqrt{99} \Rightarrow f_{b}=10 \mathrm{kHz} \\
& f_{t}=15000 \times 10^{\mathrm{k}}=150 \mathrm{MHz} \\
& \text { d) } A_{0}=10 \times 100=1000 \mathrm{~V} / \mathrm{S}_{\mathrm{a}} \\
& \left|1+\frac{j f}{f_{b}}\right|=10 \Rightarrow \frac{0.1 \times 10^{9}}{f_{b}}=\sqrt{99} \Rightarrow f_{b}=10 \mathrm{MHz} \\
& f_{t}=1000 \times 10^{\mathrm{HHz}}=10 \mathrm{~Hz}_{\mathrm{Hz}}
\end{aligned}
$$

$$
\text { e) } A_{0}=25 \mathrm{~V} / \mathrm{mV} \times 10=25 \times 10^{4} \mathrm{v} / \mathrm{v}
$$

$$
\begin{aligned}
& \text { e) } A_{0}=25 \mathrm{~V} / \mathrm{mV} \times 10=25 \times 10^{4} \mathrm{~V} / \mathrm{V} \\
& \left|1+\frac{j f}{F_{6}}\right|=10 \Rightarrow \frac{25 \mathrm{kHz}}{4 f_{0}}=\sqrt{99} \Rightarrow F_{6}=2.51 \mathrm{kHz}
\end{aligned}
$$

$$
F_{t}=A_{0} f_{b}=25 \times 10^{4} \times 2.51 \times 10^{3}=627.5 \mathrm{MHz}
$$

2.83

$G_{\text {nom }}=\frac{-R_{2}}{R_{1}}=-20 \quad A_{0}=10^{4} \mathrm{~V} / \mathrm{J} \quad f_{t}=10^{6} \mathrm{~Hz}$
Eq. 2.35: $\omega_{3 \mathrm{db}}=\frac{w_{\mathrm{t}}}{1+R_{2} / R_{1}}=\frac{2 \pi \times 10^{6}}{1+20}=2 \pi \times 47.6$
$f_{3 \mathrm{db}}=47.6 \mathrm{kHz}$
Eq. $2.34: \frac{v_{0}}{v_{i}} \propto \frac{-R_{2} / R_{1}}{1+\frac{s}{v_{t} /\left(1+\frac{R_{2}}{R_{1}}\right)}}=\frac{-20}{1+\frac{215}{2 \pi \times 10^{6}}}$
$f=0.1 \mathrm{~F}_{3 \mathrm{db}} \Rightarrow\left|\frac{L_{8}}{v_{i}}\right|=\frac{-20}{\sqrt{1+(0.1)^{2}}}=+19.9 \mathrm{v} / \mathrm{v}$
$f=10 F_{3 \mathrm{db}} \Rightarrow\left|\frac{v_{0}}{v_{i}}\right|=\frac{-20}{\sqrt{1+100}}=1.99 \mathrm{v} / \mathrm{V}$

2.84

$1+\frac{R_{2}}{R_{1}}=100 \mathrm{~V} / \mathrm{V} \quad, f_{t}=20 \mathrm{mHz}$
$f_{3 \mathrm{db}}=\frac{R_{1}}{1+\frac{R_{2}}{R_{1}}}=200 \mathrm{kHZ}$
$G_{j(\omega)}=\frac{100}{1+j^{f / s_{3 d h}}} \Rightarrow \varphi=-\tan ^{-1} \frac{f}{f_{336}}=$
$Q=-6^{\circ} \Rightarrow 5=f_{3 d b} \times \tan 6^{\circ}=21 \mathrm{kHz}$
$\varphi=-84^{\circ} \Rightarrow f=f_{3 \mathrm{db}} \times \tan 84^{\circ}=1.9 \mathrm{MHz}$

2.85

a) $\frac{-R_{2}}{R_{1}}=-100 \mathrm{~V} / \mathrm{v}, f_{d b}=100 \mathrm{kHz}$ Eq. $2.35: \omega_{t}=\omega_{3 d b}\left(1+\frac{R_{2}}{R_{1}}\right) \Rightarrow F_{t}=100^{\mathrm{K}} \times 101=10 \mathrm{~d} / \mathrm{dz}$
b) $\begin{aligned} & 1+\frac{R_{2}}{R_{1}}=100 \mathrm{~V} / \mathrm{V} \quad f_{3 \mathrm{db}}=100 \mathrm{kHz} \\ & F_{t}=f_{3 \mathrm{db}}^{\prime}\left(1+\frac{R_{2}}{R_{1}}\right)=10 \mathrm{HHz}\end{aligned}$
C) $1+\frac{R_{2}}{R_{1}}=2 \mathrm{~V} / \mathrm{V} \quad f_{3} \mathrm{db}=10 \mathrm{HHz}$
$S_{t}=10 \mathrm{HHz} \times 2=20 \mathrm{MHz}$
d) $\frac{-R_{2}}{R_{1}}=-2 \mathrm{~V} / \mathrm{V} \quad f_{3 \mathrm{~b}}=10 \mathrm{HHz}$ $f_{t}=10 \mathrm{MHz}(1+2)=30 \mathrm{MHZ}$
e) $\begin{aligned} \quad & -\frac{R_{2}}{R_{1}}=-1000 \mathrm{~V} / \mathrm{V} \quad F_{3} \mathrm{db}=20 \mathrm{KHz} \\ f_{t} & =20 \mathrm{~K}(1+1000)=20.02 \mathrm{MHz}\end{aligned}$
f) $1+\frac{R_{2}}{R_{1}}=1 \mathrm{~V} / \mathrm{v} \quad F_{3} \mathrm{db}=1 \mathrm{MHz}$
$f_{t}=|M \times|=1 \mathrm{MHz}$
g) $\begin{aligned} & \frac{R_{2}}{R_{1}}=-1 \quad f_{3+6}=1 \mathrm{MHz} \\ & f_{t}=1 \mathrm{M}(1+1)=2 \mathrm{MHZ}\end{aligned}$
2.86
$1+\frac{R_{2}}{R_{1}}=100 \mathrm{~V} / \mathrm{V} \quad f_{32 b}=8 \mathrm{kHz}$
$f_{t}=8 \times 100=800 \mathrm{kHz}$
$f_{\text {for }} f_{32 b}=20 \mathrm{kHz}: G_{0}=\frac{800}{20}=40 \mathrm{~V} / \mathrm{v}$

2.87

$f_{3 a_{b}}=f_{t}=14 \mathrm{~Hz}$
$|G|=\frac{1}{\left.\sqrt{1+\frac{f}{5 d b_{b}}}\right)^{2}}=\frac{1}{\sqrt{1+f^{2}}} \quad f_{\text {in }} H H Z$
$|G|=0.99 \Rightarrow F=0.142 \mathrm{MHz}$
The follower behaves like a low -pass STC circuit with a time constant $\tau=\frac{1}{w 316}$ Thus: $\quad \tau=\frac{1}{2 \pi \times 10^{6}}=\frac{1}{2 \pi} \mu s$
$t_{r}=2.2 \pi=0.35 \mu \mathrm{~s} \quad$ (Refer to Appendix F)

which gives:
$\frac{v_{0}}{v_{1}}=\frac{-1}{1+5 /\left(\omega_{t / 3}\right)}$
The venin's equivalent
$f_{3 d b}=\frac{f_{E}}{3}$. Similar results can be obtained
for $\frac{v_{0}}{v_{2}}$.

2.93

The peak value of the largest possible sine wave that can be applied at the input without output clipping is: $\frac{ \pm 12 \mathrm{~V}}{100}=0.12 \mathrm{~V}=120 \mathrm{mv}$ rms value $=\frac{120}{\sqrt{2}}=85 \mathrm{mv}$
2.94
a) $R_{L}=1 k \Omega$
for $V_{\text {omax }}=10^{V^{\circ}}: V_{p}=\frac{10}{100}$ $v_{p}=0.10$
 when output is at its peak, $i_{L}=\frac{10}{1 k}=10 \mathrm{~mA}$ $i=\frac{10}{100 \mathrm{~K}}=0.1 \mathrm{~mA}$. therefore $i_{0}=10+0.1=10.1$ is well under $i_{o m a x}=20 \mathrm{~mA}$.
b) $R_{L}=100 \Omega$

If output is at its peak: $i_{L}=\frac{10^{v}}{0.1}=100 \mathrm{~mA}$ which exceeds Lomax $=20 \mathrm{~mA}$. Therefore V_{0} cannot 90 as high as 10 V . instead: $20 \mathrm{~mA}=\frac{V_{0}}{100^{\Omega}}+\frac{V_{0}}{100^{K}}=V_{0}=\frac{20}{10.01}=2^{V}$ $U_{p}=\frac{2}{100}=0.02 \mathrm{v}=20 \mathrm{mv}$
$\begin{array}{ll}\text { c) } R_{L}=? & i_{\text {max }}=20 \mathrm{~mA}=\frac{10^{v}}{R_{\text {min }}}+\frac{10^{v}}{100^{k}} \\ 20-0.1=10 \quad \Rightarrow R \quad=502 \Omega\end{array}$ $20-0.1=\frac{10}{R_{L_{\text {min }}}} \Rightarrow R_{R_{\text {min }}}=502 \Omega R_{\text {min }}$

2.95

The output is triangular with the slew rate
of $20 \% / \mu s$. In order to reach $3 v$, it takes $\frac{3}{20} \mu s=0.15 \mu \mathrm{~s}=150 \mathrm{~ns}$.
Therefore the minimums pulse width is 150^{ns}.

2.97

Slope of the triangle wave $=\frac{20 \mathrm{~V}}{T / 2}=S R$ Thus $\frac{20}{T} \times 2=10 \mathrm{~V} / \mathrm{s}$

$$
\Rightarrow T=4 \mu s \text { or } f^{T}=\frac{1}{T}=250 \mathrm{kHz}
$$

For a Sine wave $v_{D}=v_{0} \sin \left(2 \pi \times 250 \times 10^{3} t\right)$
$\frac{d v_{0}}{d t}=2 \pi \times 250 \times 10^{3} \hat{v_{0}}=S R$
de max
$\Rightarrow \hat{v}_{0}=\frac{10 \times 10^{6}}{2 \pi \times 10^{3} \times 250}=6.37 \mathrm{~V}$

2.98

$$
v_{0}=10 \operatorname{Sin} \omega t \Rightarrow \frac{d v_{0}}{d t}=\left.10 \omega \operatorname{Cos} \omega t \Rightarrow \frac{d v_{0}}{d t}\right|_{\text {wax }}=10 \omega
$$

The highest frequeury at which this at wax
output is possible is that for which:

$$
\begin{aligned}
& \text { output is possible is that hor which: } \\
& \left.\frac{d v}{d t}\right|_{\text {max }}=S R \Rightarrow 10 \omega_{\text {max }}=60 \times 10^{+6}=\gamma^{\omega} \max _{x}=6 \times 10^{5}
\end{aligned}
$$

$$
\Rightarrow f_{\max }=45.5 \mathrm{kHz}
$$

$$
2.99
$$

a) $v_{1}=0.5, v_{0}=10 \times 0.5=5 \mathrm{~V}$

Output distortion will be due to slew Rate
Cimitation and will occur at the frequency
For which $\left.\frac{d v_{0}}{d r}\right|_{\max }=S R$
$\omega_{\text {max }} \times 5=\frac{1}{10^{-6}}=2 \times 10^{5} \mathrm{rad} / \mathrm{s} \Rightarrow f_{\text {max }}=31.8 \mathrm{KHz}$
b) The output will distort at the value of
V_{i} that results in $\left.\frac{d v_{0}}{d t}\right|_{\text {ara }}=S R$.
$v_{0}=15 v_{i} \operatorname{Sin} 2 \pi \times 20 \times 10^{3}$
$\left.\frac{d v_{0}}{d t}\right|_{\text {an }}=10 v_{0} \times 2 \pi \times 20 \times 10^{3}$
Thus $v_{i}=\frac{1 / 10^{-6}}{10 \mathrm{~N} 2 \mathrm{n} \times 20 \times 10^{3}}=0.795 \mathrm{~V}$
C) $U_{1}=50 \mathrm{mV} \quad U_{0}=500 \mathrm{mV}=0.5 \mathrm{~V}$

Slew rate begins at the frequency for which
$\omega_{\times 0.5}=5 R$
which gives $\omega=\frac{1 / 10^{-6}}{0.5}=2 \times 10^{6} \mathrm{rad} / \mathrm{s}$ or $f=318.3$
However the small signal 3 db frequency is
$f_{3 d b}=\frac{f_{t}}{1+\frac{R_{t}}{R_{1}}}=\frac{2 \times 10^{6}}{10}=200 \mathrm{kHz}$
Thus the useful frequency range is limited at 200 kHz .
d) for $\mathrm{F}=5 \mathrm{KHz}$, the slew Rate limitation occurs at the value of $v_{i} g i v e n$ by
$\omega \times 10 V_{i}=S R \Rightarrow V_{i}=\frac{1 / 10^{-6}}{2 \pi \times 5 \times 10^{3} \times 10}=3.18 \mathrm{~V}$
Such an input voltage, however would ideally result in an output of 31.8 V which exceeds $V_{\text {omar }}$. Thus $V_{\text {image }}=\frac{V_{\text {max }}}{10}=1 V$ peak.

2.100

$V_{0}=V_{0 S}\left(1+\frac{R_{2}}{R_{1}}\right) \Rightarrow-0.3=V_{0 S}\left(1+\frac{100}{1}\right) \approx 3 \mathrm{mV}$

2.101

$u_{o s}= \pm 2 \mathrm{mV}$
$v_{0}=0.01 \operatorname{Sin} \omega t \times 200+v_{0 S} \times 200=2 \operatorname{Sin} \omega t \pm 0.4 \mathrm{~V}$
2.102

Output $D C$ offset, $v_{o s}=3 m V_{\times 1000}=3 \mathrm{~V}$
Therefore the maximum amplitude of am input
sinusoid is the one that results in an output
peak amplitude of $13.3=10 \mathrm{~V} \Rightarrow v_{i}=\frac{10}{1000}=10 \mathrm{mV}$

If the amplifier is capacity coupled, then:
$v_{\text {mar }}=\frac{13}{1000}=13 \mathrm{mt}$

2.103

$$
v_{O S}=\frac{1.4}{100}=1.4 \mathrm{mv}
$$

2.104

a) $I_{B}=\left(I_{B_{1}}+I_{B_{2}}\right) / 2$
open input:

$v_{0}=v_{+}+R_{2} I_{B_{1}}=V_{O S}+R_{2} I_{B_{1}}$
$9.31=v_{o S}+10000 I_{B_{1}}$ (1)
input connected to ground:
$v_{0}=U_{+}+R_{2}\left(I_{B_{1}}+\frac{U_{0 S}}{R_{1}}\right)=U_{O S}\left(1+\frac{R_{2}}{R_{1}}+R_{2} I_{B_{1}}\right.$
$9.09=v_{05} \times 101+10000{ }^{1} r_{B_{1}}$ (2)
(1), (2) $\Rightarrow 100 v_{o s}=-0.22 \Rightarrow v_{o s}=-2.2 \mathrm{mV}$
$\Rightarrow I_{B_{1}}=930 n A$
$I_{B} \simeq I_{B_{1}}=930 n A$
b) $v_{\text {OS }}=-2.2 \mathrm{mV}$
c) In this case, Since
R is too Large, we may ignore $v_{o s}$ compare to the voltage drop ceros R.

$v_{o s} \ll R r_{B} \quad$, Also Eq. 2.46 holds $: R_{3}=R_{1} \| R_{2}$ therefore from Eq. 2.47: $v_{0}=I_{o S} * R_{2} \Rightarrow I_{o s}=\frac{0.8}{10^{M}}$ $I_{0 S}=-80 \mathrm{nA}$

for capacitively coupled i^{K} to ground:
$V_{+} \rightarrow V_{-}=V_{0 s}$
$V_{A}=2 V_{0 s}$
$V_{0}=3 V_{\text {os }}=12 \mathrm{mV}$
This is much smaller
than capacitvely coupled insist case.

```
2.109
```

At $0^{\circ} \mathrm{C}$, we expect $\pm 10 \times 25 \times 1000^{\mu}= \pm 250 \mathrm{mV}$
At $75^{\circ} \mathrm{C}$, we expect $\pm 10 \times 50 \times 1000^{\mu}= \pm 500 \mathrm{mV}$ We expect these quantities to have opposite polarities.

2.110

$100=1+\frac{R_{2}}{R_{1}} \Rightarrow R_{1}=10.1^{\mathrm{k} \Omega}$
a) $V_{0}=100 \times 10^{-9} \times 1 \times 10^{6}=0.1^{V}$

b) largest output offset is:
$V_{0}=1^{m Y} \times 100+0.1^{V}=200 \mathrm{mV}=0.2^{V}$
c) For bias current compensation we connect
a resistor R_{3} in series with the positive input terminal of theop-anp, with: $R_{3}=R_{1} \| R_{2}$
$I_{O S}=\frac{100}{10}=10 \mathrm{nA}$
$R_{3}=181^{\mathrm{K}} 111^{M}=10 \mathrm{k} \Omega$

The offset current alone results in an output offset voltage of $I_{0 s} \times R_{2}=10 \times 10^{-9} \times 1 \times 10^{6}=10^{\mathrm{mV}}$ d) $V_{0}=100 \mathrm{mV}+10 \mathrm{mV}=110 \mathrm{mY}$

2.111

$R_{3}=R_{1} \| R_{2}=9.9^{\mathrm{k} \Omega}$
(Refer to 2.46)

$V_{0}=I_{0 S} R_{2} \quad$ Eq. 2.47
$V_{0}=0.21=I_{O S} \times 1^{M} \Rightarrow I_{O S}=0.21 \mu \mathrm{~A}$

If $V_{O S}=1 \mathrm{mV}$
$V_{+}=-F_{B_{2}} R_{3} \mp Y_{\text {os }}$

$I_{B_{1}}=\frac{R_{3} I_{B_{2}} \pm V_{05}}{R_{1}}+\frac{0.21+R_{3} I_{B_{2}} \pm V_{05}}{R_{2}}$
$I_{B_{1}}=R_{3} I_{B_{2}}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) \pm \operatorname{Vos}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)$
$\frac{1}{R_{3}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \Rightarrow I_{B_{1}}-\Gamma_{B_{2}}= \pm V_{O S}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)$
$\Rightarrow I_{0 s}= \pm \frac{1 \mathrm{mV}}{9.9 \mathrm{~K}}= \pm 0.1 \mu \mathrm{~A}$
If we apply the same current as Ios to the
other end of R_{3}, then it will cancel out the offset current effect on the output. $\pm 0.1 \mu \mathrm{~A}$

Now if we use $\pm 15 \mathrm{~V}$ supplies:

$$
2.112
$$

$$
\frac{v_{0}}{v_{i}}=\frac{-1}{S C R}=\frac{-1}{j \omega C R}=\frac{1}{-j \omega_{\times 10} \times 10^{-9} \times 100 \times 10^{3}}
$$

$$
\frac{v_{0}}{v_{i}}=-\frac{10^{3}}{j \omega}
$$

a) $\frac{v_{0}}{v_{i}}=1 \Rightarrow w=1^{\mathrm{KPN} / / \mathrm{f}} \mathrm{f}=159 \mathrm{~Hz}$
b) $\frac{1}{j}$ indicates $90^{\circ} \mathrm{log}$, but since its $\frac{-1}{j}$, it results in output leading the input by 90°
c) $\frac{v_{0}}{v_{i}}=\frac{-10^{3}}{j \omega}$ if frequency if lowered by a factor of $\frac{v_{i}}{i 0}$, then the output would in crease by atactor of 10 .

Cont.
d) The phase doesnot change and the output still reads the ueput by 90°
2.113
$R_{\text {in }}=R=100 \mathrm{~K} \Omega$
$C R=15 \Rightarrow C=\frac{1}{100 \times 10^{3}}=104 \mathrm{~F}$

with a $-I V d c$ input applied, the capacitor
charges with a constant current:
$I=\frac{1 V}{R}=0.01 \mathrm{~mA}$ and its voltage rises linearly:
$v_{0}^{R}(t)=-10+\frac{1}{C} \int_{0}^{t} I d t=-10+\frac{I}{C} t=-10+\frac{t}{R C}$
the voltage reaches of at $t=10 \mathrm{RC}=10 \mathrm{~s}$
and it reaches

$$
{ }_{10} \mathrm{~V} \text { at } t=20 \mathrm{~s} \mathrm{~s}_{0}^{\mathrm{vo}}
$$

2.114

$$
|T|=\frac{1}{\omega R C}
$$

$$
\text { If }|T|=100 \mathrm{~V} / \mathrm{V} \text { for } f=1^{\mathrm{KHZ}} \text {, then }
$$

$$
\begin{aligned}
& \text { for }|T|=1 V / V, f \text { has to be } \\
& 1^{k} \times 100=100 \mathrm{kHz} \text {. }
\end{aligned}
$$

$$
\text { Also } R C=\frac{1}{\omega_{T} T}=\frac{1}{2 \pi \times 11^{k} \times 100}=1.59 \mu \mathrm{~s}
$$

2.115

$R_{\text {in }}=R$, Thus $R=100 \mathrm{k} \Omega$.
$|T|=\frac{1}{\omega R C}=1$ at $\omega=\frac{1}{R C}$
$\omega=1000=\frac{1}{R C}$ ar $C=\frac{\frac{R C}{1000 \times 100 .}}{10}=10^{\mathrm{nF}}$
with a $2 \mathrm{~V}-2 \mathrm{~ms}$ pulse at the input, the
output falls linearly until $t=2 \mathrm{~ms}$ at which
$v_{0}=V_{1}, v_{0}=\frac{-I}{C} t=\frac{-2}{R C} t=-2 t$ Volts
where t in m
Thus $V_{1}=-4 V$

with $V_{f}=2 \operatorname{Sin} 1000$ t applied at the input, $v_{0}(t)=2 \times \frac{1}{1000 \times 10^{-3}} \operatorname{Sin}\left(1000 t+90^{\circ}\right)$
$V_{0}(t)=2 \operatorname{Sin}\left(1000 t+90^{\circ}\right)$

$$
2.116
$$

$R_{\text {in }}=R=20 \mathrm{k} \Omega$
$|\Gamma|=\frac{1}{\omega R C}=1$ at $\omega=2 \pi \times 10^{k H z} \Rightarrow C=\frac{1}{2 \pi \times b^{k} \times 20^{k}}$ $c=0.796 \mathrm{nF}$

Refer to discussion in page no:
$\begin{aligned} \frac{v_{0}}{v_{i}}=\frac{R_{f} / R}{1+S C R_{f}} & \begin{aligned} \text { and the finite dc gain is } \\ \frac{-R_{f}}{R}\end{aligned}\end{aligned}$ or equivalently $100 \mathrm{~V} / \mathrm{v}$ we have: $\frac{-R_{E}}{R}=-100 \mathrm{~V} / \mathrm{V}$ $\Rightarrow R_{F}=100 \times 20 \mathrm{~K}=2 \mathrm{M} \Omega$

The comer frequency $\frac{1}{C R_{F}}$ is: $\frac{1}{0.796^{n} \times 2^{M}}=628$

$v_{0}(t)=-\frac{1}{R c} \int_{0}^{t} 1 . d t=-62.8 t \quad 0.28 \mathrm{~V} \quad \leqslant 0.1 \mathrm{~ms}$ $v_{0}(0.1)=-{ }^{\circ} 6.28 \mathrm{~V}$
b) with R_{F} : $v_{0}(t)=v_{0}(\infty)\left(1-e^{-t / c R_{F}}\right)$
(Refer to pg . 112)
$v_{0}(\infty)=-I \times R_{F}=-\frac{1 \mathrm{~V}}{20 \mathrm{~K}} \times 2^{M}=-100 \mathrm{~V}$
$v_{0}(t)=-100\left(1-e^{-t / 1.5}\right)^{\frac{20 k}{20}(\mathrm{v})}$

a) To compensate for the effect of de bias current I_{B}, we can consider the following model

Simitar to the discussion leading to equation (2,16) we have: $R_{3}=R\left\|R_{F}=10 \mathrm{~K} \Omega\right\| / \mathrm{M} \Omega \Rightarrow R_{3}=9.9 \mathrm{k} \Omega$
(b) As discussed in Section 2.8.2 the dc output voltage of the integrator when the input is grounded is: $V_{0}=V_{O S}\left(1+\frac{R_{F}}{R}\right)+I_{O S} R_{F}$
$V_{0}=3 \mathrm{mv}\left(1+\frac{1 \mathrm{M} \Omega}{10 \mathrm{k} \Omega}\right)+10 \mathrm{nA} \times 1 \mathrm{M} \Omega=0.303 v+0.01 \mathrm{v}$ $V_{0}=0.313 \mathrm{~V}$

2.121

$$
\begin{aligned}
& \frac{v_{0}}{v_{i}}(s)=-S R C=-5 \times 0.01 \times 10^{-6} \times 10 \times 10^{3}=-10^{-4} \mathrm{~s} \\
& \frac{v_{0}}{v_{i}}(j \omega)=-j \omega \times 10^{-4} \Rightarrow\left|\frac{v_{0}}{v_{i}}\right|=-\omega \times 10^{-4} \Rightarrow \\
& \left|\frac{v_{0}}{v_{i}}\right|=1 \text { when } \omega=10^{4} \mathrm{Rad} / \mathrm{s} \text { or } f=1.59 \mathrm{kHz}
\end{aligned}
$$

For an input 10 times this frequency, the output will be 10 times as large as the input: 10 V peak-to-peak. The $(-j)$ indicates that the output lags the input by 90°. Thus $v_{0}(t)=-5 \operatorname{Sin}\left(10^{5} t+90^{\circ}\right)$ votes
2.122
$v_{0}=-C R \frac{d v_{i}}{d t}$

For os t $\leqslant 0.5$:
$v_{0}=-1 \mathrm{~ms} \times \frac{1 \mathrm{~V}}{0.5 \mathrm{~ms}}=-2 \mathrm{~V}$
and $v_{0}=0$ otherwise

2.123

slope $=\frac{2 v}{0.5^{\mathrm{ms}}}=4 \mathrm{~V}$
$c \frac{d v_{1}}{d t} \cdot 0.1 \times 10^{-6} \times \frac{4}{10^{-3}}=0.4 \mathrm{~mA}$
Thus the peak value of the output square wave
is $0.4 \mathrm{~mA} \times 10^{\mathrm{k}} \Omega=4 \mathrm{~V}$. The frequency of the output
is the same as the in put (iKHz).
The average value of the output is 0 .
To increase the value of the output to 10 V ,
R has to be increased to $\frac{10}{4}=2.5$, i.e $25^{k} \Omega$
When a $1-K H z$, iv peak input sine wave is applied $v_{i}=\sin (2 \pi \times 1000 t)$
a sinusoidal signal appears at the output. It can be determined by one of the following methods:
a) $\begin{aligned} v_{0}(t) & =-R C \frac{d v_{i}}{d t}=-0.1 \times 10^{-6} \times 10 \times 10^{3} \frac{d v_{i}}{d t}=-10^{-3} \frac{\mathrm{~d} v_{1}}{d t} \\ v_{0}(t) & =-10^{-3} \times 21 \times 1000 \times \operatorname{Cos}(2 \pi(\times 1000 t)\end{aligned}$ $v_{0}(t)=-10^{-3} \times 2 \pi \times 1000 \times \operatorname{Cos}(2 \pi$
$v_{0}(t)=-2 \pi \operatorname{Cos}(2 \pi \times 1000 t)$

Thus the peak amplitude is 6.280 and the negative peaks occurat $t=0, \frac{2 \pi}{2 \pi \times 1000}, \ldots$

b) $\frac{v_{0}}{v_{i}}=-S R C \Rightarrow \frac{v_{0}}{v_{i}}(j \omega) \Rightarrow-j \omega R C \Rightarrow v_{0}^{(t)}-j \omega R C v_{i}^{(t)}$ the outputs is inverted oud has 90° phasesthift, due to ($-j$) factor.
$v_{0}(t)=-(\omega R C) \times 1 \operatorname{Sin}\left(2 \pi \times 1000 t+90^{\circ}\right)$
$v_{0}(t)=-6.28 \operatorname{Sin}\left(2 \pi \times 1000 t+90^{\circ}\right)$
$v_{0}(t)=-6.28 \operatorname{Cos}(2 \pi \times 1000 t)$
Same as before.
C) The peaks of the output wave form are
equal to $R C_{x}$ (maximum slope of input wave) Since the maximum slope occurs at the zero crossings, its value is $2 \pi \times 1000$. Thus the peak output $=2 \pi \times 1000 \times R C=6.28 \mathrm{~V}$ The negative peak occurs at $\omega t=0,2 r, \ldots$.

2.124

$R C=10^{-3} \mathrm{~s}$ when $C=10^{n F} \Longrightarrow R=100 \mathrm{k} \Omega$
$\theta \quad \frac{v_{0}}{v_{1}}=-S R C \quad \frac{v_{0}}{v_{1}}(j \omega)=-j \omega R C \quad \begin{aligned} & \varphi=-90^{\circ} \\ & \text { always }\end{aligned}$
$\left|\frac{v_{0}}{v_{0}}\right|=1 \Rightarrow \omega_{m=}=\frac{1}{R C}=1 \mathrm{ky} /$ Gain is 10 times the unity
gain, when the frequency is 10 times the unity
gain frequency. Similarly for $\omega=\frac{1}{10} \mathrm{krat/}$, gain is
$0.1 \mathrm{~V} / \mathrm{V}$. (for $\omega=10 \mathrm{krad} / \mathrm{s}$, gain $=10 / \mathrm{v}$)
for high frequencies $C_{\text {is }}$ short-cirated, R,
$\frac{V_{0}}{v_{1}}=\frac{-R}{R_{1}}=-100 \Rightarrow R_{1}=1 \mathrm{k} \Omega$
$\frac{v_{0}}{v_{i}}=\frac{-R c s}{R_{1} S+1}=\frac{-0^{-3} \mathrm{~s}}{10^{-5} \mathrm{~s}+1} \Rightarrow w_{3 \mathrm{sb}_{b}}=100 \mathrm{krad} / \mathrm{sorf}=15.9$
For unity gain: $110^{-3} s\left|=10^{-5} s+1\right| \Rightarrow \omega_{H}=1.01 \mathrm{krad} / \mathrm{s}$
if $\omega=10.1 \mathrm{krod} / \mathrm{s}:\left|\frac{v_{c}}{\frac{v}{v}}\right|=\frac{10.1}{1.01}, 10, \varphi=-95.77^{\circ}$

2.125

Refer to Fig. p2.125:
$\frac{v_{0}}{v_{i}}=-\frac{Z_{2}}{Z_{1}}=\frac{-R_{2}}{R_{1}+\frac{1}{3 c}}=\frac{-\left(\frac{R_{2}}{R_{1}}\right) s}{s+\frac{1}{R_{1} c}}$ which is the
transfer function of an STC HP filter with
a high frequency gain $K=\frac{-R_{2}}{R_{1}}$ and a
$3-d b$ frequency $\omega_{0}=\frac{1}{R, C}$
The high. frequency input impedance approaches
R_{1} (as $\frac{1}{j \omega c}$ becomes neglibibly small) So
we cam select $R_{1}=10 \mathrm{k} \Omega$
To Obtain a high-frequency gain of 40 d 6
(i.e. 100): $\frac{R_{2}}{R_{1}}=100 \Rightarrow R_{2}=1 M \Omega$.

For a 3-db frequency of 1000 Hz :
$\frac{1}{R_{1} C}=2 \pi \times 1000 \Rightarrow C=15.9 \mathrm{nF}$
from the Bode-diagrame below, we see that
$\left|\frac{u_{0}}{U_{0}}\right|$ reduces to unity at $f=0.01 f_{0}=10 \mathrm{~Hz}$

$$
2.126
$$

Refer to the circuit in Fig. P2.126,

$$
\begin{aligned}
& \frac{v_{0}}{v_{i}}=-\frac{Z_{2}}{z_{1}}=-\frac{1}{z_{1} Y_{2}}=-\frac{1}{\left(R_{1}+\frac{1}{s C_{1}}\right)\left(\frac{1}{R_{2}}+3 C_{2}\right)} \\
& \frac{v_{0}}{v_{i}}=-\frac{R_{2} / R_{1}}{\left(1+\frac{1}{R_{1} C_{5}}\right)\left(1+S R_{2} C_{2}\right)} \\
& \frac{v_{0}}{v_{i}}(j \omega)=\frac{-R_{2} / R_{1}}{\left(1+\frac{1}{j \omega R_{1}}\right)\left(1+j \omega R_{2} C_{2}\right)}=\frac{-R_{2} / R_{1}}{\left(1+\frac{\omega 1}{j \omega}\right)\left(1+j \frac{j}{w_{2}}\right)} \\
& \text { where } w_{1}=\frac{1}{R_{1} C_{1}} \quad, w_{2}=\frac{1}{R_{2} C_{2}}
\end{aligned}
$$

a) for $\omega \ll \omega_{1} \ll \omega_{2}$
$\frac{v_{0}}{v_{1}}(j \omega) \propto \frac{-R_{2} / R_{1}}{\left(1+\frac{\omega_{1}}{j \omega}\right)} \simeq \frac{-R_{2} / R_{1}}{\omega y_{j}}=-j \frac{R_{2}}{R_{1}} \frac{\omega}{\omega_{1}}$
cont.

