MECH 220 Engineering Graphics

Orthographic Drawings

3504

Spring 2009-10

Inst.: Abed Alkader Al Saidi IOEC room 411

Office: Extension: e-mail:

aa166@aub.edu.lb

Inst. Abed Alkader Alsaidi, MECH 220

Topics

- Overview
- Available Convention
- Orthographic Projection
- Transferring Dimensions
- Drawing Curved Shapes
- Selecting Views
- Geometric Entities Representation
- Sketching Exercise

History

- Orthographic Projection was formalized by Gaspard Mongne (b. 1746).
- Mongne worked as a drafter in the fortification design office of the school at Mezier for French army officers
- His work was kept a military secret for a number of years until he was allowed to publish in 1795.
- Stone cutters were the first to adopt his methods. Later carpenters and other trades abandoned their old methods for orthographic projection.

Elements of Engineering Drawing

Engineering drawing are made up of *graphics language* and *word language*.

Describe size, location and specification of the object.

Inst. Abed Alkader Alsaidi, MECH 220

Basic Knowledge for Drafting

PROJECTION METHOD

Inst. Abed Alkader Alsaidi, MECH 220

PROJECTION THEORY

The projection theory is used to graphically represent 3-D objects on 2-D media (paper, computer screen).

The projection theory is based on two variables:
1) Line of sight
2) Plane of projection (image plane or picture plane)

Line of sight is an imaginary ray of light between an observer's eye and an object.

There are 2 types of LOS : parallel and converge

Plane of projection is an imaginary flat plane which the image is created.

The image is produced by connecting the points where the LOS pierce the projection plane.

Disadvantage of Perspective Projection

Perspective projection is *not* used by engineer for manufacturing of parts, because
1) It is difficult to create.

2) It does not reveal exact shape and size.

Orthographic Projection

Orthographic Projection

- Is the backbone of technical drafting
- A system of drawings viewed using perpendicular projectors from the object to a plane of projection
- Views are generated using the flat planes

MECH 220: 2nd LECTURE Projection of an Object

- a. Identifying the projection plane
- b. Rays extending form every point of the object and perpendicular to the projection plane are generated
- c. Intersection of the rays with the projection plan generates the required view

Inst. Abed Alkader Alsaidi, MECH 220

MEANING

Orthographic projection is a parallel projection technique
 in which the parallel lines of sight are *perpendicular* to the
 projection plane

Revolving an Object to Produce the Six Basic Views

Revolving an Object to Produce the Six Basic Views

ORTHOGRAPHIC VIEW

Orthographic view depends on relative position of the object

ORTHOGRAPHIC VIEW

<u>NOTES</u>

- Orthographic projection technique can produce either
- 1. Multiview drawing

that each view show an object in two dimensions.

2. Axonometric drawing

that show all three dimensions of an object in one view.

Both drawing types are used in technical drawing for communication.

Axonometric (Isometric) Drawing

Advantage Easy to understand

Disadvantage Shape and angle distortion

Example Distortions of shape and size in isometric drawing

Multiview Drawing

Advantage It represents accurate **shape and size.**

Disadvantage Require practice in writing and reading.

Example Multiviews drawing (2-view drawing)

ORTHO VIEWS

Available Convention

MECH 220: 2nd LECTURE ORTHO VIEWS Third Angle Convention

- Third angle convention is used mainly in Canada and US for views alignment.
- The object is rotated by using the corner where the view is located as a hinge corner

MECH 220: 2nd LECTURE ORTHO VIEWS First Angle Convention

 The object is rotated by using the corner opposite where the view is located as a hinge corner

ORTHO VIEWS:

Third Angle Convention Versus First Angle Convention

- Universal symbols are used to identify which format being used
- Combining the two systems in the same drawing is a major mistake

First-Angle Projection Symbol

symbol and layout.

Inst. Abed Alkader Alsaidi, MECH 220

Sample for 1st & 3rd Angle Projection Drawing

The only difference between the two systems is the views location

Inst. Abed Alkader Alsaidi, MECH 220

The Glass Box

- More than one view is required to describe an object
- Imagine that the object you are going to draw is positioned inside a glass box, so that the large flat surfaces of the object are parallel to the walls of the box.
- From each point on the object, imagine a ray, or projector perpendicular to the wall of the box forming the view of the object on that wall or projection plane.

MECH 220: 2nd LECTURE Unfolding the Glass box

- For Third Angle Projection (the method in the U.S.)
- Imagine that the walls of the box are hinged and unfold the views outward around the front view.
- This will give you the standard arrangement of views for 3rd Angle Projection which is used in the US, Canada, and some other countries.

MECH 220: 2nd LECTURE The Six Basic Views

Unfolding the glass box generates WIDTHthe 6 basic views of the object DEPTH Third-Angle Projection Symbol TOP WIDT DEPTH HEIGHT FP BACK R SIDE L SIDE FRONT H-DEPTH--DEPTH--WIDTH-DEPTH

BOTTOM

ORTHO VIEWS: Third Angle Convention

Inst. Abed Alkader Alsaidi, MECH 220

ORTHOGRAPHIC vs. ISOMETRIC

ISOMETRIC DRAWING

ORTHOGRAPHIC DRAWING

Inst. Abed Alkader Alsaidi, MECH 220

ORTHO VIEWS

Transferring Dimensions

ORTHO VIEWS:

projections & relevant dimensions

- The six orthographic views uses repeatedly the same the dimensions of the part
 - a. Width
 - b. Depth
 - c. Height
- Transferring dimension form one view to another reduces drafting time
- Mesurment transfer are:
 - a. Scale technique
 - b. Divider technique
 - c. The 45 angle line technique

MECH 220: 2nd LECTURE Transferring Dimensions

Folding lines omitted

- Scale technique use a scale or a ruler each time to transfer dimensions.
- Divider technique use a divider or a compass to transfer dimensions

MECH 220: 2nd LECTURE Using a Miter Line to Transfer Depth

MECH 220: 2nd LECTURE Using a Miter Line to Transfer Depth

MECH 220: 2nd LECTURE Using a Miter Line to Transfer Depth

MECH 220: 2nd LECTURE Using a Miter Line to Transfer Depth

Draw the view locating each vertex of the surface on the projection and miter line.

Inst. Abed Alkader Alsaidi, MECH 220

ORTHO VIEWS

Drawing Curved Shapes

Inst. Abed Alkader Alsaidi, MECH 220

Plotting Curved Shapes using mitered lines

- Using the View showing the curve as a true circle
- Identify point on the circle dividing it into arcs of 30 degrees increment
- Transfer the identified points to the front view

Plotting Curved Shapes using mitered lines

- Numbering the point helps you keep track of your lines
- Draw vertical lines projecting the identified point from the front view to the top view
- Identify your 45 degree transfer line

Plotting Curved Shapes using mitered lines

- Project the identified points from your right view vertically to the 45 degree transfer line
- Draw horizontal line form the projected points to you top view
- Intersection of the corresponding Vertical line initiated form the front view and the horizontal lines initiated from the right view identifies the points located on the curved shape as shown from the top view

Inst. Abed Alkader Alsaidi, MECH 220

MECH 220: 2nd LECTURE Plotting Curved Shapes using mitered lines

The result of the connected point is show in figure below

MECH 220: 2nd LECTURE Freehand sketching exercise

Generate the Right View of above model based on the provided front and top views

ORTHO VIEWS

Selecting Views

MECH 220: 2nd LECTURE Necessary Views

A sketch or drawing should only contain the views needed to clearly and completely describe the object. Choose the views that show the shape most clearly, have the fewest hidden lines, and show the object in a usual, stable, or operating position.

MECH 220: 2nd LECTURE Position of Side Views

An alternative position for the side view is rotated and aligned with the top view.

Inst. Abed Alkader Alsaidi, MECH 220

ORTHO VIEWS: Examples

ORTHO VIEWS

Geometric Entities Representation

Inst. Abed Alkader Alsaidi, MECH 220

ORTHO VIEWS Conventions: Representing Hidden Entities

<u>In any view:</u>

if geometric entities (edge, surface, etc..) are blocked from view, hidden lines (instead of solid edges) are used to identify those entities.

Proper Drafting:

use broken line with 1/8" length & 1/16" gap)

Inst. Abed Alkader Alsaidi, MECH 220

ORTHO VIEWS

Conventions: Representing Cvlindrical Entities

In any view:

it is desirable to use center lines and center tick marks to represent cylindrical geometric entities (shaft, hole, etc..).

Proper Drafting:

* use 1/8"-long ticks & 1/16" gap to represent the center mark (crosshair)

* extend centerlines out 3/8" beyond the edge describing the round entity.

MECH 220: 2nd LECTURE ORTHO VIEWS Conventions: Representing fillets & rounds

In any view:

In M.E. designs, it is common practice to round sharp corners.

- * Rounded internal corners are called fillets
- * Rounded external corners are called rounds

Proper Drafting:

when projecting views, generate lines to show only those curves (rounds & fillets) that are < 1/4" in diameter.

Inst. Abed Alkader Alsaidi, MECH 220

Assignment Due Next week

Exercises posted on moodle

♦ A girded paper is available on MOODLE

MECH 220: 2nd LECTURE Summary

- The six standard views are often thought of as produced from an unfolded glass box.
- Distances can be transferred or projected from one view to another.
- Only the views necessary to fully describe the object should be drawn.