MECH 220
 Engineering Graphics

Orthographic Drawings

Spring 2009-10

Inst.: Abed Alkader Al Saidi

Office:
Extension:
e-mail:

IOEC room 411
3504
aa166@aub.edu.lb

MECH 220: 2nd LECTURE

Topics

- Overview
- Available Convention
- Orthographic Projection
- Transferring Dimensions
- Drawing Curved Shapes
- Selecting Views
- Geometric Entities Representation
- Sketching Exercise

MECH 220: 2nd LECTURE

History

- Orthographic Projection was formalized by Gaspard Mongne (b. 1746).
- Mongne worked as a drafter in the fortification design office of the school at Mezier for French army officers
- His work was kept a military secret for a number of years until he was allowed to publish in 1795.
- Stone cutters were the first to adopt his methods. Later carpenters and other trades abandoned their old methods for orthographic projection.

Elements of Engineering Drawing

Engineering drawing are made up of graphics language and word language.

Graphics language

Describe a shape (mainly).

> Word language

Describe size, location and specification of the object.

Basic Knowledge for Drafting

PROJECTION METHOD

PROJECTION METHOD

PROJECTION THEORY

The projection theory is used to graphically represent 3-D objects on 2-D media (paper, computer screen).

The projection theory is based on two variables:

1) Line of sight
2) Plane of projection (image plane or picture plane)

Line of sight is an imaginary ray of light between an

 observer's eye and an object.There are 2 types of LOS : parallel and converge

Parallel projection

Line of sight

Perspective projection

Line of sight

Plane of projection is an imaginary flat plane which

 the image is created.\square
The image is produced by connecting the points where the LOS pierce the projection plane.

Parallel projection

Plane of projection

Perspective projection
Plane of projection

Disadvantage of Perspective Projection

Perspective projection is not used by engineer for manufacturing of parts, because

1) It is difficult to create.
2) It does not reveal exact shape and size.

Orthographic Projection

MECH 220: 2nd LECTURE
 Orthographic Projection

- Is the backbone of technical drafting
- A system of drawings viewed using perpendicular projectors from the object to a plane of projection
- Views are generated using the flat planes

(b)

MECH 220: 2nd LECTURE

Projection of an Object

a. Identifying the projection plane
b. Rays extending form every point of the object and perpendicular to the projection plane are generated
c. Intersection of the rays with the projection plan generates the required view

MEANING

_ Orthographic projection is a parallel projection technique in which the parallel lines of sight are perpendicular to the projection plane

MECH 220: 2nd LECTURE
 Revolving an Object to Produce the Six Basic Views

MECH 220: 2nd LECTURE

Revolving an Object to Produce the Six Basic

 Views

ORTHOGRAPHIC VIEW

Orthographic view depends on relative position of the object to the line of sight.

Two dimensions of an object is shown.

More than one view is needed to represent the object.

Multiview drawing

Three dimensions of an object is shown.

Axonometric drawing

ORTHOGRAPHIC VIEW

NOTES

Orthographic projection technique can produce either

1. Multiview drawing
that each view show an object in two dimensions.
2. Axonometric drawing that show all three dimensions of an object in one view.

Both drawing types are used in technical drawing for communication.

Axonometric (Isometric) Drawing

Advantage
Disadvantage

Easy to understand
Shape and angle distortion

Example Distortions of shape and size in isometric drawing

Multiview Drawing

Advantage
Disadvantage Require practice in writing and reading.
Example Multiviews drawing (2-view drawing)

MECH 220: 2nd LECTURE

ORTHO VIEWS

Available Convention

MECH 220: 2nd LECTURE

ORTHO VIEWS

Third Angle Convention

- Third angle convention is used mainly in Canada and US for views alignment.
- The object is rotated by using the corner where the view is located as a hinge corner
(a)

 View Rotation for a Third-Angle Projection Top View
(b)

MECH 220: 2nd LECTURE ORTHO VIEWS
 First Angle Convention

- The object is rotated by using the corner opposite where the view is located as a hinge corner

MECH 220: 2nd LECTURE

Third Angle Convention Versus First Angle Convention

- Universal symbols are used to identify which format being used
- Combining the two systems in the same drawing is a major mistake

Third-Angle Projection Symbol

hird-Angle Projection Alignment for Orthographic Views

First-Angle Projection Symbol

First-Angle Projection for Orthographic Drawing FIGURE 6.2 First-angle projection symbol and layout.

MECH 220: 2nd LECTURE

Sample for 1st \& 3rd Angle Projection Drawing

The only difference between the two systems is the views location

RIGHT-SIDE VIEW

FRONT VIEW

(b) THIRD-ANGLE PROJECTION

Third angle projection is used in the U.S., and Canada

MECH 220: 2nd LECTURE

The Glass Box

- More than one view is required to describe an object
- Imagine that the object you are going to draw is positioned inside a glass box, so that the large flat surfaces of the object are parallel to the walls of the box.
- From each point on the object, imagine a ray, or projector perpendicular to the wall of the box forming the view of the object on that wall or projection plane.

MECH 220: 2nd LECTURE

Unfolding the Glass box

- For Third Angle Projection (the method in the U.S.)
- Imagine that the walls of the box are hinged and unfold the views outward around the front view.
- This will give you the standard arrangement of views for 3rd Angle Projection which is used in the US, Canada, and some other countries.

MECH 220: 2nd LECTURE

The Six Basic Views

- Unfolding the glass box generates the 6 basic views of the object

MECH 220: 2nd LECTURE

ORTHO VIEWS: Third Angle Convention

ORTHOGRAPHIC vs. ISOMETRIC

ISOMETRIC
DRAWING

ORTHOGRAPHIC DRAWING

MECH 220: 2nd LECTURE

ORTHO VIEWS

Transferring Dimensions

MECH 220: 2nd LECTURE

ORTHO VIEWS:
projections \& relevant dimensions

- The six orthographic views uses repeatedly the same the dimensions of the part
a. Width
b. Depth
c. Height
- Transferring dimension form one view to another reduces drafting time
- Mesurment transfer are:
a. Scale technique
b. Divider technique
c. The 45 angle line technique

TOP VIEW

MECH 220: 2nd LECTURE

Transferring Dimensions

Folding lines omitted

- Scale technique use a scale or a ruler each time to transfer dimensions.
- Divider technique use a divider or a compass to transfer dimensions

MECH 220: 2nd LECTURE

Using a Miter Line to Transfer Depth

MECH 220: 2nd LECTURE

Using a Miter Line to Transfer Depth

>Identify critical points delimiting the required view
>Sketch light lines projecting depth locations for points to miter line and then down into side view as shown.

MECH 220: 2nd LECTURE

Using a Miter Line to Transfer Depth

Project additional points, surface by surface.

MECH 220: 2nd LECTURE

Using a Miter Line to Transfer Depth

Draw the view locating each vertex of the surface on the projection and miter line.

MECH 220: 2nd LECTURE

ORTHO VIEWS

Drawing Curved Shapes

MECH 220: 2nd LECTURE
 Plotting Curved Shapes using mitered lines

- Using the View showing the curve as a true circle
- Identify point on the circle dividing it into arcs of 30 degrees increment
- Transfer the identified points to the front view

MECH 220: 2nd LECTURE
 Plotting Curved Shapes using mitered lines

- Numbering the point helps you keep track of your lines
- Draw vertical lines projecting the identified point from the front view to the top view
- Identify your 45 degree transfer line

(c)

(d)

MECH 220: 2nd LECTURE

Plotting Curved Shapes using mitered lines

- Project the identified points from your right view vertically to the 45 degree transfer line
- Draw horizontal line form the projected points to you top view
- Intersection of the corresponding Vertical line initiated form the front view and the horizontal lines initiated from the right view identifies the points located on the curved shape as shown from the top view

MECH 220: 2nd LECTURE

Plotting Curved Shapes using mitered lines

- The result of the connected point is show in figure below

MECH 220: 2nd LECTURE

Freehand sketching exercise

Generate the Right View of above model based on the provided front and top views

MECH 220: 2nd LECTURE

ORTHO VIEWS

Selecting Views

MECH 220: 2nd LECTURE

Necessary Views

A sketch or drawing should only contain the views needed to clearly and completely describe the object. Choose the views that show the shape most clearly, have the fewest hidden lines, and show the object in a usual, stable, or operating position.

One view drawing

One view drawing
14/09/2017 of a connecting rod

MECH 220: 2nd LECTURE
 Position of Side Views

An alternative position for the side view is rotated and aligned with the top view.

MECH 220：2nd LECTURE

ORTHO VIEWS：Examples

（1）	\square	$\square 0$	10
\checkmark	4	$\bigoplus \pm$	\square
548	\＃c	『景	［迠）
Q 四	쁚	$\square \mathrm{T}$	（1）
（0）	\＃	$\square 1$	（－） 8
$\square 0$	\＃－	¢ ${ }^{-1}$	國貝

MECH 220: 2nd LECTURE

ORTHO VIEWS

Geometric Entities Representation

Conventions: Representing Hidden Entities

FIGURE 6.27 Hidden lines.

In any view:

if geometric entities (edge, surface, etc..) are blocked from view, hidden lines (instead of solid edges) are used to identify those entities.

Proper Drafting:

use broken line with $1 / 8^{\prime \prime}$ length \& 1/16" gap)

MECH 220: 2nd LECTURE

Conventions: Representing Cvlindrical Entities

In any view:
it is desirable to use center lines and center tick marks to represent cylindrical geometric entities (shaft, hole, etc..).

Proper Drafting:

* use $1 / 8$ "-long ticks \& 1/16" gap to represent the center mark (crosshair)
* extend centerlines out 3/8" beyond the edge describing the round entity.

MECH 220: 2nd LECTURE

ORTHO VIEWS

Conventions: Representing fillets \& rounds

In any view:
In M.E. designs, it is common practice to round sharp corners.

* Rounded internal corners are called fillets
* Rounded external corners are called rounds

Proper Drafting:

when projecting views, generate lines to show only those curves (rounds \& fillets) that are $<1 / 4$ " in diameter.

MECH 220: 2nd LECTURE

Assignment Due Next week

- Exercises posted on moodle
- A girded paper is available on MOODLE

MECH 220: 2nd LECTURE

Summary

- The six standard views are often thought of as produced from an unfolded glass box.
- Distances can be transferred or projected from one view to another.
- Only the views necessary to fully describe the object should be drawn.

