B-5-1. Time constant $=0.25 \mathrm{~min}$. The steady-state error is 2.5 degrees.

B-5-2. \quad Rise time $=2.42 \mathrm{sec}$
Peak time $=3.63 \mathrm{sec}$
Maximum overshoot $=0.163$
Settling time $=8 \mathrm{sec}(2 \%$ criterion $)$

B-5-3. The maximum overshoot of 5% corresponds to $\boldsymbol{\zeta}=0.69$. Hence

$$
a_{n}=\frac{2}{5}=\frac{2}{0.69}=2.90 \mathrm{rad} / \mathrm{sec}
$$

B-5-4.

$$
\frac{C(s)}{R(s)}=\frac{K(T s+1)}{J s^{2}+K T s+K}
$$

Since $T=3, K / J=2 / 9$, we have

$$
\frac{C(s)}{R(s)}=\frac{\frac{2}{9}(3 s+1)}{s^{2}+\left(\frac{2}{9}\right) 3 s+\frac{2}{9}}
$$

Hence, $2 \zeta W_{n}=6 / 9$ and $W_{n}{ }^{2}=2 / 9$. Thus

$$
\zeta=0.707
$$

6-5-10. For the given system we have

$$
\frac{C(s)}{R(s)}=\frac{K}{s^{2}+2 s+K k s+K}
$$

Note that

$$
K=\omega_{n}^{2}=4^{2}=16
$$

Since
we obtain

$$
25 \omega_{m}=2+k k
$$

$$
2 \times 0.7 \times 4=2+k k=2+16 k
$$

Thus

$$
k=0.235
$$

```
% **** Unit-step response *****
num = [lllll
den = [llll
t = 0:0.02:10;
step(num,den,t)
grid
title('Unit-Step Response')
xlabel('t Sec')
ylabel('c(t)')
% **** Unit-ramp response ****
numr = [lllllll
```



```
c= step(numr,denr,t);
plot(t,c,'-',t,t,'--')
grid
title('Unit-Ramp Response')
xlabel('t Sec')
ylabel('c(t)')
% ***** Unit-impulse response *****
impulse(num,den,t)
grid
title('Unit-Impulse Response')
xlabel('t Sec')
ylabel('c(t)')
```

The unit-step response curve is shown below. The unit-ramp response curve and unit-impulse response curve are shown on the next page.

