AMERICAN UINVERSITY OF BEIRUT FACULTY OF ENGINEERING AND ARCHITECTURE
 EECE 460 Control Systems
 Spring 2006-2007

Quiz II Solution

Problem 1 (60 points):
a) There is a pole at $\omega=0$ and at $\omega=0.3 \rightarrow \mathrm{G}(\mathrm{s})$ is of the form $\frac{K}{s\left(1+\frac{s}{0.3}\right)}$.

At $\omega=10^{-2} \mathrm{G}(\mathrm{s})$ should be 48 dB (from figure) $\rightarrow \mathrm{K}$ contributes to 8 dB or $\mathrm{K}=2.52$.
Thus $\mathrm{G}(\mathrm{s})=\frac{2.52}{s\left(1+\frac{s}{0.3}\right)} \rightarrow \mathrm{G}(\mathrm{s})=\frac{0.756}{s(s+0.3)}$
b) Pole at $\omega=0 \rightarrow$ marginally stable
c) $\mathrm{K}_{\mathrm{v}}=\lim _{s \rightarrow 0} i t \mathrm{sG}(\mathrm{s})=2.52$
d) $G_{M}=\infty, P_{M}=19.5^{\circ}$
e) $G_{M}>0, P_{M}>0$ and min. phase OLTF \rightarrow stable CLTF
f) Choose the lead compensator: The maximum phase margin that a lead compensator can contribute is 65°. The phase margin of the uncompensated system is 19.5° and thus the lead compensator should contribute around $35^{\circ}(=25+10)$ which is beyond the allowable range.
g) The lead compensator is of the form: $K \frac{T s+1}{\alpha T s+1}$ where $\mathrm{K}=\mathrm{K}_{\mathrm{C}} \alpha$

$$
\Phi_{m}=35^{\circ} \rightarrow \alpha=0.27
$$

The static error velocity should remain the same: $K_{v}=2.52$

$$
\begin{aligned}
& \rightarrow \operatorname{limit}_{s \rightarrow 0} \mathrm{~s} \frac{0.756}{s(s+0.3)} K \frac{T s+1}{\alpha T s+1}=2.52 \rightarrow \mathrm{~K}=1 \rightarrow \mathrm{~K}_{\mathrm{c}}=1 / \alpha=3.7 \\
& -20 \log \left(\frac{1}{\sqrt{\alpha}}\right)=-5.6 \rightarrow \text { The gain cross over frequency, } \omega_{\mathrm{c}} \approx 1.2 \\
& \rightarrow \omega_{1}=\frac{1}{T}=\sqrt{\alpha} \omega_{C}=0.62 \text { and } \omega_{2}=\frac{1}{\alpha T}=\frac{\omega_{C}}{\sqrt{\alpha}}=2.31 \mathrm{rd} / \mathrm{s} \\
& \rightarrow \mathrm{G}_{\mathrm{c}}(\mathrm{~s})=\frac{1.6 s+1}{0.43 s+1} \rightarrow \text { O.L.T.F }=\mathrm{G}(\mathrm{~s}) \mathrm{G}_{\mathrm{c}}(\mathrm{~s})=\frac{1.6 s+1}{0.43 s+1} \frac{0.756}{s(s+0.3)}
\end{aligned}
$$

The bode diagram of the compensated system is shown below. The new G_{M} and P_{M} are ∞ and 49.5°, respectively.

Problem 2 (60 points):
a) S-plane poles: 0, -4

S-plane zeros: $+2 \mathrm{i},-2 \mathrm{i}$
\rightarrow The system is marginally stable
b) $\mathrm{K} \rightarrow 0$, Therefore C.L.T.F poles $=$ O.L.T.F poles $=0,-4$
c) Range of pure real poles of C.L.T.F $=[-4,0]$
d) System critically damped $\rightarrow \varsigma=1$. The C.L.T.F $=\frac{K G}{1+K G}=$

$$
\begin{aligned}
& \frac{K\left(s^{2}+4\right)}{(1+K) s^{2}+4 s+4 K}=\frac{\left(\frac{K}{1+K}\right)\left(s^{2}+4\right)}{s^{2}+\left(\frac{4}{1+K}\right) s+\left(\frac{4 K}{1+K}\right)} \\
& \rightarrow 2 \omega_{\mathrm{n}}=\left(\frac{4}{1+K}\right) \text { and } \omega_{\mathrm{n}}^{2}=\left(\frac{4 K}{1+K}\right) \rightarrow \mathrm{K}=0.618
\end{aligned}
$$

e) The C.L.T.F poles converge to the O.L.T.F zeros $=+2 \mathrm{i}$ and -2 i
f) $0.618<\mathrm{K}<\infty$
g)

