QUIZ 1

Spring 2001-2002

(Thursday, April 10, 2002)

CVEV 051 – STRUCTURES I CLOSED BOOK, 1 ½ HOURS

lame:	$M_{r/s}$	Key
	- 1	

ID#: April 10,2002

NOTES

- 2 PROBLEMS 10 PAGES
- ALL YOUR ANSWERS SHOULD BE PROVIDED ON THE QUESTION SHEETS.
- ONE EXTRA SHEET IS PROVIDED AT THE END
- ASK FOR ADDITIONAL SHEETS IF YOU NEED MORE SPACE.
- SOME ANSWERS MAY REQUIRE MUCH LESS THAN THE SPACE PROVIDED.

 DO NOT USE THE BACK OF THE SHEETS FOR ANSWERS. DRAFT BOOKLET WILL BE PROVIDED; BUT DO NOT USE FOR ANSWERS. BOTH QUESTION SHEETS AND DRAFT BOOKLET SHOULD BE RETURNED. 							
YOUR COMMENT(S)							
DO NOT WRITE IN THE	SPACE BELOW						
MY COMMENT(S)							
<u>YOUR GRADE</u>	D 11 1 (40						
	Problem I:/40 Problem II:/60 Other:						

TOTAL:

/100

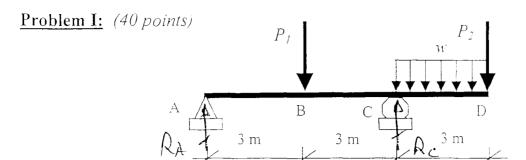
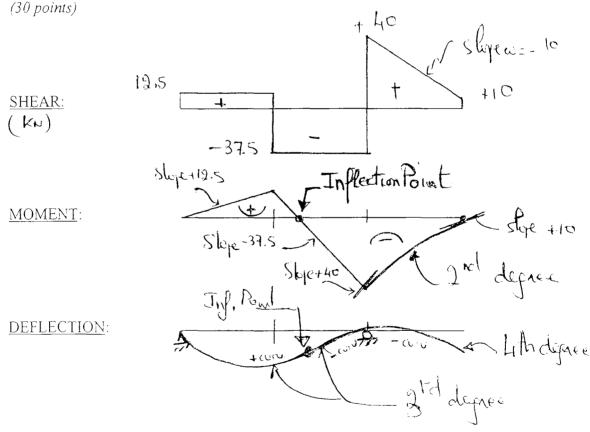



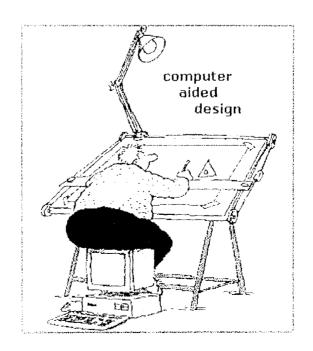
Figure I

For the beam shown in Figure I, the own weight is neglected. Your diagrams/sketches should include any feature/value you think is relevant or important.

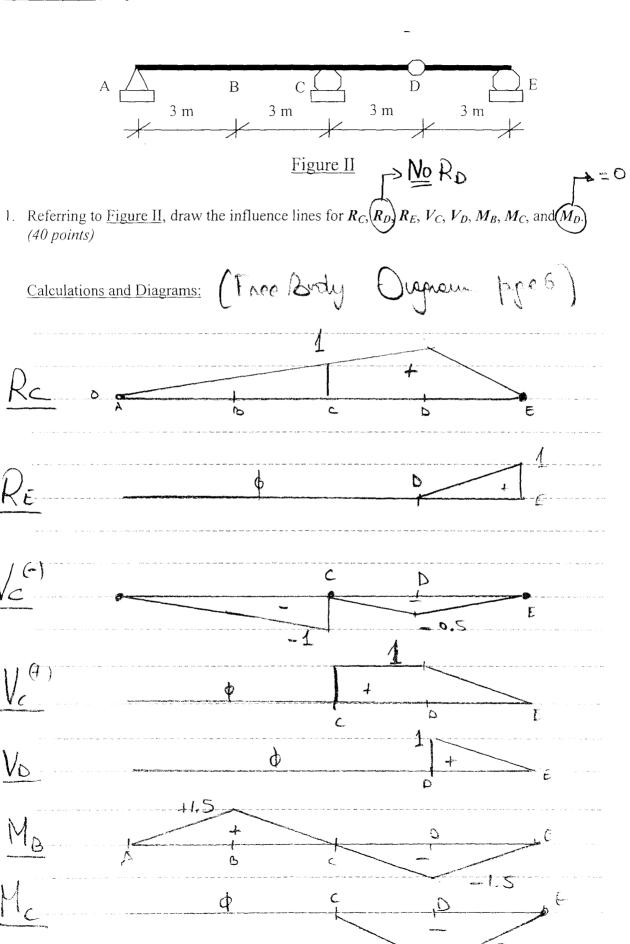
1. Let w=10 kN/m, $P_1=50 \text{ kN}$, and $P_2=10 \text{ kN}$ Draw the shear and bending moment diagrams and sketch the deflected shape.

<u>Calculations:</u>

Rection: $\leq M_{A=0} \Rightarrow R_{C \times 6} = 50 \times 3 + 10 \times 9 + 10 \times 3.75$ $\Rightarrow R_{C} = 77.5 \text{kV}$ (1) $\leq F_{Y : 0} \Rightarrow R_{A} = 50 + 10 + 10 \times 3 - 77.5$ $R_{A} = 12.5 \text{kv}$ (1) 2. In this question, <u>no calculations</u> are required; use your intuition and best judgement. Sketch the deflected shape when P_1 only is applied (w=0 and $P_2=0$). Sketch the deflected shape when P_2 only is applied (w=0 and $P_1=0$). Deduce the influence line of the deflection at B (Assume upward deflection is positive). (10 points)


Deflection due to P₂:

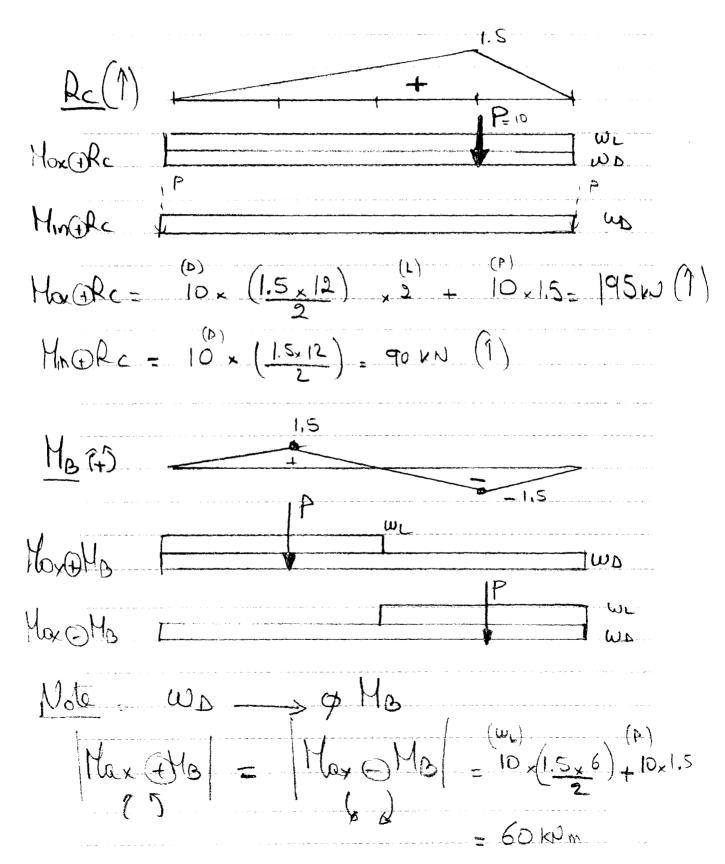
Deflection due to P₂:


Deflection due to P₂:

INF. DEF. at B:

tairs a literic

Problem II: (60 points)


5

Calculations and Diagrams (cont'd):

F.3.D			Va			
	R.	B	A RC	VA		1 R
(V_c^-)	R _A		Veter La		4	A
$\left(V_{c}^{s+} \right)$			8 1	- L	1	

2. Let $w_D=10 \text{ kN/m}$ (dead load); $w_L=10 \text{ kN/m}$ and P=10 kN (live loads) Compute the maximum values (positive and negative or minimum) for R_C and M_B . (20 points)

Calculations and Diagrams:

