QUIZ 1

Spring 2004-2005
(Tuesday April 12, 2005)
CIVE311-STRUCTURES I
CLOSED BOOK, $1 \& 1 / 2$ HOURS
Name:
ID\#: \qquad

NOTES

- 3 PROBLEMS - 13 PAGES.
- ALL YOUR ANSWERS SHOULD BE PROVIDED ON THE QUESTION SHEETS.
- ONE EXTRA SHEET IS PROVIDED AT THE END.
- ASK FOR ADDITIONAL SHEETS IF YOU NEED MORE SPACE.
- SOME ANSWERS MAY REQUIRE MUCH LESS THAN THE SPACE PROVIDED.
- DO NOT USE THE BACK OF THE SHEETS FOR ANSWERS.
- DRAFT BOOKLET WILL BE PROVIDED; BUT DO NOT USE FOR ANSWERS.
- BOTH QUESTION SHEETS AND DRAFT BOOKLET SHOULD BE RETURNED.
- CHECK BOXES ARE TO CONFIRM THAT YOU HAVE SOLVED A QUESTION.

YOUR COMMENT(S)

DO NOT WRITE IN THE SPACE BELOW

MY COMMENT(S)

YOUR GRADE

Problem I: _ _ _ 130
Problem II: _ _ _ $/ 20$
Problem III:_ _ _ $/ 50$
Other:

- - -

TOTAL: /100

Problem I: (30 points)

Figure I

The shelf in Figure I is supported as shown. The shelf is to carry a maximum of 12 cubic boxes (shown arbitrarily distributed in the figure) at any one time, each sized $50 \times 50 \times 50 \mathrm{~cm}$ and having a density of $20 \mathrm{kN} / \mathrm{m}^{3}$. Ignore the own weights of the shelf and its supports.

Compute the maximum absolute vertical reaction $\boldsymbol{R}_{\boldsymbol{A}}$ and sketch the corresponding distribution of boxes on the shelf for each of the following conditions:

1. One level of boxes is allowed, and boxes are fully spread between A and C .
2. One level of boxes is allowed.
3. More than one level of boxes is allowed.

Compare results from conditions 1 to 3 and briefly comment.

Calculations and/or Diagrams:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Calculations and/or Diagrams (cont'd):

\qquad

Problem II:(20 points)

Figure II
For the beam shown in Figure II, the own weight is neglected.
Your diagrams/sketches should include any feature/value you think is relevant or important.
Let $\boldsymbol{w}=\mathbf{2 0} \mathbf{k N} / \mathbf{m}$ and $\mathbf{P}=\mathbf{8 0} \mathbf{k N}$
Compute the reactions in the beam, and draw the shear and bending moment diagrams; sketch the deflected shape. (20 points)

SHEAR:

MOMENT:

Calculations and/or Diagrams (cont'd):

\qquad

Calculations and/or Diagrams (cont'd):

\qquad

Problem III: (50 points)

Figure III

1. Referring to Figure III, draw the influence lines for $\boldsymbol{R}_{\boldsymbol{A}}, \boldsymbol{V}_{\boldsymbol{A}}, \boldsymbol{V}_{\boldsymbol{D}}, \boldsymbol{M}_{\boldsymbol{B}}, \boldsymbol{M}_{\boldsymbol{C}}$, and $\boldsymbol{M}_{\boldsymbol{D}}$. Draw in the order which you find appropriate. (25 points)

Calculations and Diagrams:

\qquad

Calculations and Diagrams (cont'd):

Calculations and Diagrams (cont'd):

2. Let $\boldsymbol{w}_{\boldsymbol{D}}=\mathbf{1 0} \mathbf{k N} / \mathbf{m}$ (dead load); $\boldsymbol{w}_{\boldsymbol{L}}=\mathbf{2 0} \mathbf{k N} / \mathbf{m}$ and $\boldsymbol{P}=\mathbf{8 0} \mathbf{k N}$ (live loads)

- Compute the maximum absolute value for $\boldsymbol{R}_{\boldsymbol{A}}$, and show the corresponding loading position. (9 points)
- Compute $\boldsymbol{R}_{\boldsymbol{A}}$ for \boldsymbol{w}_{L} on AC only and \boldsymbol{P} on E and compare with Problem II (do not include $\boldsymbol{w}_{\boldsymbol{D}}$). (6 points)

Calculations and Diagrams:
\qquad

Calculations and Diagrams (cont'd):

\qquad
3. Compute the maximum absolute value of $\boldsymbol{M}_{\boldsymbol{B}}$ for the truck load shown, assuming that the truck can travel in either directions, and show the corresponding position(s) of the truck. (10 points)

Calculations and Diagrams:
\qquad

EXTRA SHEET: Continued from page

Name:
ID\#:

Calculations and/or Diagrams:

