QUIZ 1

Spring 2004-2005

(Tuesday April 12, 2005)

CIVE311 - STRUCTURES I CLOSED BOOK, 1 & 1/2 HOURS

Name:

NOTES

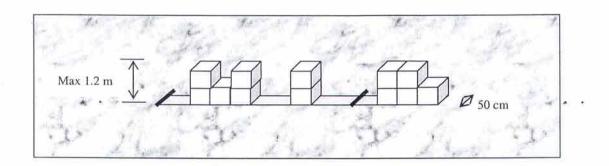
- 3 PROBLEMS 13 PAGES.
- ALL YOUR ANSWERS SHOULD BE PROVIDED ON THE QUESTION SHEETS.
- ONE EXTRA SHEET IS PROVIDED AT THE END.
- ASK FOR ADDITIONAL SHEETS IF YOU NEED MORE SPACE.
- SOME ANSWERS MAY REQUIRE MUCH LESS THAN THE SPACE PROVIDED.
- DO NOT USE THE BACK OF THE SHEETS FOR ANSWERS.
- DRAFT BOOKLET WILL BE PROVIDED; BUT DO NOT USE FOR ANSWERS.
- BOTH QUESTION SHEETS AND DRAFT BOOKLET SHOULD BE RETURNED.
- CHECK BOXES ARE TO CONFIRM THAT YOU HAVE SOLVED A QUESTION.

	YOUR	COMMENT	(S)
--	-------------	---------	----	---

DO NOT WRITE IN THE SPACE BELOW

MY COMMENT(S)

YOUR GRADE


Problem I: 30 /30 Problem II: 20/20

Problem III: 50/50

Other:

TOTAL: \(\infty \) /100

Problem I: (30 points)

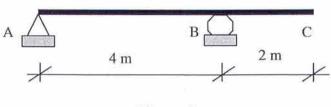
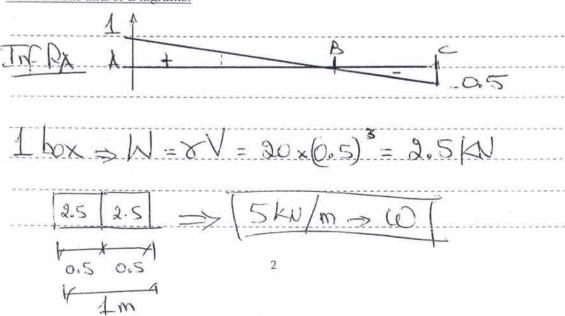
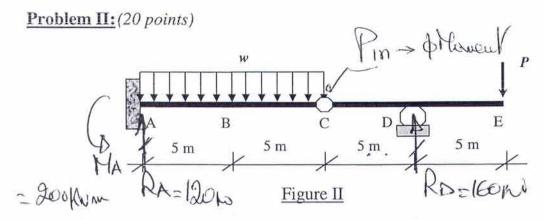


Figure I


The shelf in <u>Figure I</u> is supported as shown. The shelf is to carry a maximum of 12 cubic boxes (shown arbitrarily distributed in the figure) at any one time, each sized 50x50x50 cm and having a density of 20 kN/m³. Ignore the own weights of the shelf and its supports.

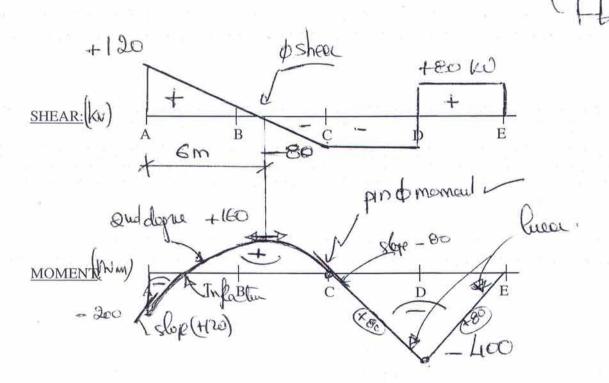
Compute the maximum absolute vertical reaction R_A and sketch the corresponding distribution of boxes on the shelf for each of the following conditions:

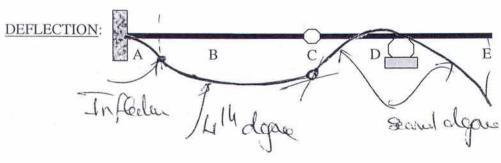

- 1. One level of boxes is allowed, and boxes are fully spread between A and C.
- 2. One level of boxes is allowed.
- 3. More than one level of boxes is allowed.

Compare results from conditions 1 to 3 and briefly comment.

Calculations and/or Diagrams:

Calculations and/or Diagrams (cont'd):
5 kJ/m
1 8 hoxes 4 hoxes
MAT 4m 2m
$R_{A} = (\frac{1 \times 4}{2} - \frac{0.5 \times 2}{2}) \times 5 = 7.5 \text{ m}$
2. Eloxes
Au & Im
RA = (1x4) x5= IOKN (7) (Nde AD >-25m)
3. 6 hoxes / 10 = 10x0/m 1 m 1.2m
6 books 1
A Bu Im & Du
$RA = (1 \times 4) = 0.25 \times 1 \times 10 = 18.75 \text{ m}$
RA3 > RAZ > RA1 - Smellsh@ Gontru Suleur)
maximum sure boxes concentrated et leyest RA




For the beam shown in <u>Figure II</u>, the own weight is neglected. *Your diagrams/sketches should include any feature/value you think is relevant or important.*

Let w=20 kN/m and P=80 kN

Compute the <u>reactions</u> in the beam, and draw the <u>shear</u> and bending <u>moment</u> diagrams; sketch

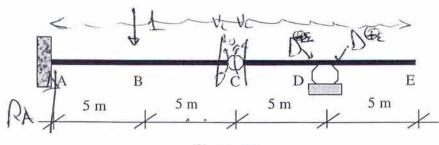
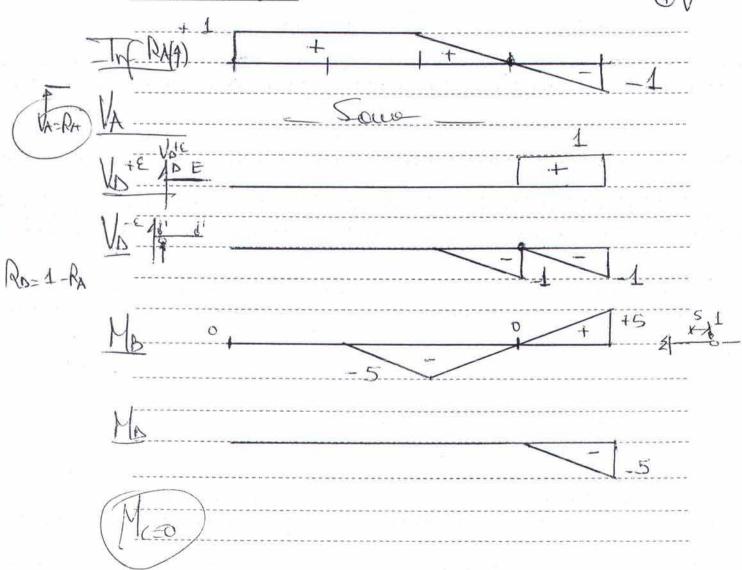
the deflected shape. (20 points)

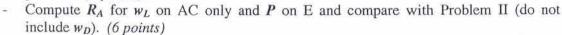
Calculations and/or Diagrams (cont'd):		. 72
(0 = 20 kg/m	0	1 =80,W
(1 1 1 1 1 1) C	= 5 AD	Sm E
MA PA	Ve TRO)
Caell Zfy =0 > RA - 20x10 + SHA=0 => MA = 20x10 2	ZHc20 → R	160h(P)
Zfy 20 → RA = 20×10 +	80 - 160 - 120	KU(1)
3/1/20 => MA = 20x 10	£ + 80x 20 - 16	0x15=2001/m/
227777777777777777777777777777777777777		

	f	
	I	

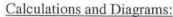
Problem III:

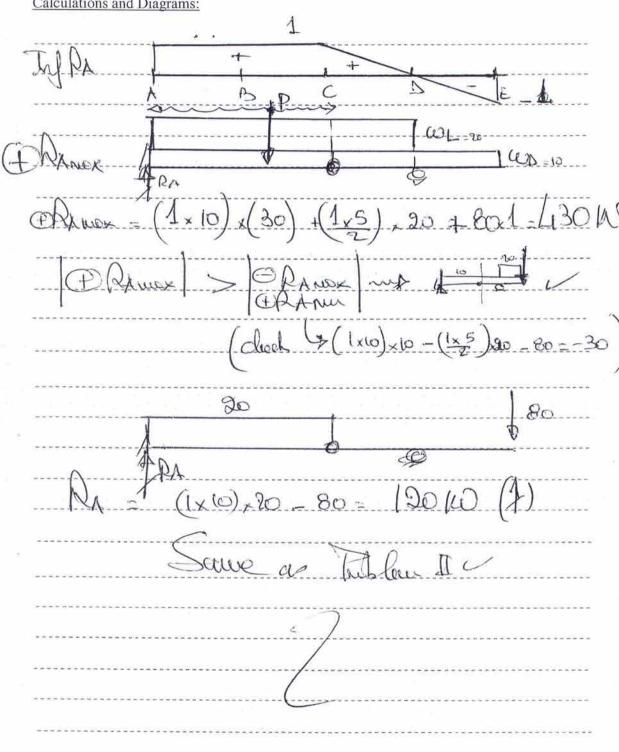
(50 points)

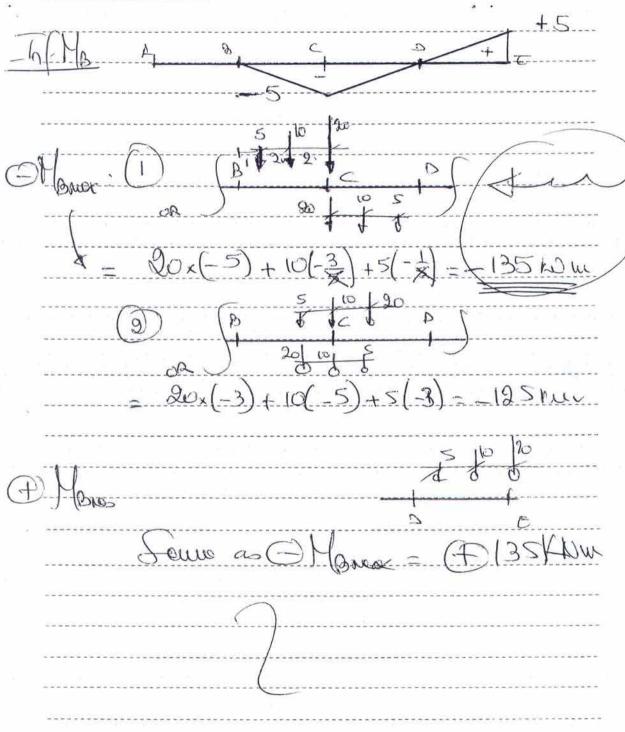

Figure III

1. Referring to Figure III, draw the influence lines for R_A , V_A , V_D , M_B , M_C , and M_D . Draw in the order which you find appropriate. (25 points)


Calculations and Diagrams:



- 2. Let $w_D=10$ kN/m (dead load); $w_L=20$ kN/m and P=80 kN (live loads)
 - Compute the maximum absolute value for R_A , and show the corresponding loading position. (9 points)



3. Compute the maximum absolute value of M_B for the truck load shown, assuming that the truck can travel in either directions, and show the corresponding position(s) of the truck. (10 points)

 $\begin{array}{c|c}
5 & 10 \\
\downarrow & \downarrow & \downarrow \\
2 & 2 & m
\end{array}$

Calculations and Diagrams:

