QUIZ 1 Spring 2006-2007 (Wednesday March 28, 2007) CIVE311 – STRUCTURES I CLOSED BOOK, 1 & 1/2 HOURS

Name:

ID#:

NOTES

- 1 PROBLEM 4 QUESTIONS 12 PAGES.
- ALL YOUR <u>ANSWERS</u> SHOULD BE PROVIDED ON THE QUESTION SHEETS.
- TWO EXTRA SHEETS IS PROVIDED AT THE END.
- ASK FOR <u>ADDITIONAL</u> SHEETS IF YOU NEED MORE SPACE.
- SOME ANSWERS MAY REQUIRE MUCH LESS THAN THE SPACE PROVIDED.
- **DO NOT** USE THE <u>BACK</u> OF THE SHEETS FOR ANSWERS.
- <u>DRAFT</u> BOOKLET WILL BE PROVIDED; BUT DO NOT USE FOR ANSWERS.
- BOTH QUESTION SHEETS AND DRAFT BOOKLET SHOULD BE <u>RETURNED</u>.
- <u>CHECK BOXES</u> ARE TO CONFIRM THAT YOU HAVE SOLVED A QUESTION.

YOUR COMMENT(S)

DO NOT WRITE IN THE SPACE BELOW

MY COMMENT(S)

YOUR GRADE

Problem I-1:	/30
Problem I-2:	/35
Problem I-3:	/15
Problem I-4:	/20
Other:	

<u>TOTAL:</u>	/100
---------------	------

Problem I/I: (100 points = 30 + 35 + 15 + 20)

For the beam shown in <u>Figure I</u>, the own weight is neglected. <u>Your diagrams/sketches should include any feature/value you think is relevant or important.</u>

1. Let **w=10 kN/m** and **P=20 kN**

Compute the <u>reactions</u> (forces and moments) in the beam, and draw the <u>shear</u> and bending <u>moment</u> diagrams; sketch the <u>deflected shape</u>. (20 points)

Can you compare the middle part BD, to a simpler beam? Draw this beam and briefly explain (no need for calculations; restrict your answer to a sketch of the beam and 2-3 lines of explanation). (5 points)

Can you compare the end parts AB or ED to a simpler beam? Draw this beam and briefly explain (no need for calculations; restrict your answer to a sketch of the beam and 2-3 lines of explanation). (5 points)

2. Referring to Figure I, draw the influence lines for R_A , R_B , M_A , M_B , M_C , V_A , V_B , and V_C . Draw in the order which you find appropriate. (35 points)

Calculations and Diagrams:

Calculations and Diagrams (cont'd): _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ -----

Calculations and Diagrams (cont'd): _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____

3. Let $w_D = 10 \text{ kN/m}$ (dead load); $w_L = 10 \text{ kN/m}$ and P = 20 kN (live loads) Compute the maximum value(s) for R_A and V_C , and show the corresponding loading position (s). (10 points) Compute R_A for w_L on BCD only and P on B and D and compare with question 1 (do -not include w_D). (5 points) Calculations and Diagrams: _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____

Calculations and Diagrams (cont'd): _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____

 \square

4. Compute the maximum value(s) of M_C for the truck load shown below, and show the corresponding position(s) of the truck. (10 points) Compute the maximum absolute moment that can ever occur between B and D for the truck

load shown below. Compare with maximum M_C and briefly comment (10 points)

Calculations and Diagrams:

EXTRA SHEET 1: Continued from page _____

<u>ID#:</u> _____

Calculations and/or Diagrams:

EXTRA SHEET 2: Continued from page _____

Name:	<u>ID#:</u>
Calculations and/or Diagrams:	