QUIZ 1

Spring 2007-2008
(March 19, 2008)

CIVE311 - STRUCTURES I
 CLOSED BOOK, 1 \& 1/2 HOURS

Name:

ID\#: \qquad

NOTES

- 2 PROBLEMS- 14 PAGES.
- ALL YOUR ANSWERS SHOULD BE PROVIDED ON THE QUESTION SHEETS.
- TWO EXTRA SHEETS IS PROVIDED AT THE END.
- ASK FOR ADDITIONAL SHEETS IF YOU NEED MORE SPACE.
- SOME ANSWERS MAY REQUIRE MUCH LESS THAN THE SPACE PROVIDED.
- DO NOT USE THE BACK OF THE SHEETS FOR ANSWERS.
- DRAFT BOOKLET WILL BE PROVIDED; BUT DO NOT USE FOR ANSWERS.
- BOTH QUESTION SHEETS AND DRAFT BOOKLET SHOULD BE RETURNED.
- CHECK BOXES ARE TO CONFIRM THAT YOU HAVE SOLVED A QUESTION.

YOUR COMMENT(S)

DO NOT WRITE IN THE SPACE BELOW

MY COMMENT(S)

YOUR GRADE

Problem I:	$/ 60$
Problem II:	$----/ 40$ ----
Other:	
TOTAL:	

Problem I (for a student engineer): (60 points)

Figure I
For the beam shown in Figure I, the own weight is neglected.
Your diagrams/sketches should include any feature/value you think is relevant or important.

1. Let $\boldsymbol{w}=\mathbf{1 0} \mathbf{k N} / \mathbf{m}$ and $\mathbf{P}=\mathbf{2 0} \mathbf{k N}$

Compute the reactions (forces and moments) in the beam, and draw the shear and bending moment diagrams; sketch the deflected shape. (20 points)

SHEAR:

MOMENT:

DEFLECTION:

Calculations and/or Diagrams (cont'd):

\qquad

Calculations and/or Diagrams (cont'd):

\qquad
2. Referring to Figure I, draw the influence lines for $\boldsymbol{R}_{\boldsymbol{B}}, \boldsymbol{R}_{\boldsymbol{D}}, \boldsymbol{M}_{\boldsymbol{A}}, \boldsymbol{M}_{\boldsymbol{B}}, \boldsymbol{M}_{\boldsymbol{C}}$, and $\boldsymbol{V}_{\boldsymbol{D}}$. Draw in $\quad \square$ the order which you find appropriate. (30 points)

Calculations and Diagrams:

Calculations and Diagrams (cont'd):

\qquad

Calculations and Diagrams (cont'd):

\qquad
3. Compute the maximum value(s) of $\boldsymbol{M}_{\boldsymbol{C}}$ for the truck load shown below, and show the corresponding position(s) of the truck. (5 points)
Compute the maximum absolute positive moment that can ever occur between B and D for the truck load shown below. Compare with maximum \boldsymbol{M}_{C} and briefly comment (5 points)

Calculations and Diagrams:

\qquad

Problem II (for a professional engineer): (40 points)

Figure II

The reinforced concrete beam AB supports a reinforced concrete column monument CD as shown in Figure II.

1. Assuming that a horizontal unit load moves on the vertical column $C D$ as shown in the figure, draw the influence lines for the reactions at A and B , and for the moment in the beam at C. (15 points)
2. For a combination of wind load $\boldsymbol{w}=\mathbf{1 0} \mathbf{k N} / \mathbf{m}$, and an impact force from a flying object $\boldsymbol{P}=\mathbf{5 0}$ $\mathbf{k N}$ that can hit the column at any location between C and D, and not considering the own weight of the system, calculate the maximum vertical reaction at B (Assume that \boldsymbol{w} and \boldsymbol{P} can hit in either directions - i.e. left to right, or right to left-, and that they can occur either individually or simultaneously). (15 points)
3. What should be the total weight of the system (beam and column) so that an uplift at B does not occur. In this case, choose a suitable square cross-section for the beam and column that will prevent the uplift (same cross-section for beam and column) given that the density of concrete is $25 \mathrm{kN} / \mathrm{m}^{3}$. (10 points)

Calculations and/or Diagrams:

\qquad

Calculations and/or Diagrams (cont'd):

\qquad

Calculations and/or Diagrams (cont'd):

\qquad

EXTRA SHEET 2: Continued from page
 Name: ID\#:

Calculations and/or Diagrams:

EXTRA SHEET 2: Continued from page

\qquad
ID\#:

Calculations and/or Diagrams:

