[00[⊕] /100 TOTAL: ## QUIZ 1 Spring 2007-2008 (March 19, 2008) CIVE311 – STRUCTURES I CLOSED BOOK, 1 & 1/2 HOURS | CLOSED BOOK, 1 & 1 | /2 HOURS | | | |--|---|-----------------------------|--------------| | Name: Key Key | <u>ш#:</u> ОС | 7 | | | <u>NOTES</u> | | | | | 2 PROBLEMS—14 PAGES. ALL YOUR ANSWERS SHOULD BE PROVIDED TWO EXTRA SHEETS IS PROVIDED AT THE ASK FOR ADDITIONAL SHEETS IF YOU NEED SOME ANSWERS MAY REQUIRE MUCH LESS DO NOT USE THE BACK OF THE SHEETS FOR A DRAFT BOOKLET WILL BE PROVIDED; BUT DO BOTH QUESTION SHEETS AND DRAFT BOOKING CHECK BOXES ARE TO CONFIRM THAT YOU YOUR COMMENT(S) | END. THAN THE SPACE. ANSWERS. O NOT USE FOR A LET SHOULD BE R | PROVIDED. ANSWERS. ETURNED. | | | | | | | | DO NOT WRITE IN THE SP MY COMMENT(S) | ACE BELOW | | | | YOUR GRADE | Problem I:
Problem II:
Other: | 60/60
40/40
— bous | Donus
(F) | ## Problem I (for a student engineer): (60 points) For the beam shown in Figure I, the own weight is neglected. Your diagrams/sketches should include any feature/value you think is relevant or important. 1. Let w=10 kN/m and P=20 kN Compute the reactions (forces and moments) in the beam, and draw the shear and bending moment diagrams; sketch the deflected shape. (20 points) SHEAR: A B SMOMENT: A B SMOMENT: 2 | | Calculations and/or Diagrams (cont'd): | |------|---| | | Countour BE part, de 4 Minus 120km | | | SM 820 => PDx12=10x122+ 90x18 PR | | | ⇒ RD=90kn(F) | | · | Cousinemp AE:
SEY =0 => RA =-RD+ 1212 +20= 50 km (1) | | (AB) | =MA-0 -M. 50 C (1) | | | = 300kh M=300 150 150 | 2. Referring to Figure I, draw the influence lines for R_B , R_D , M_A , M_B , M_C , and V_D . Draw in the order which you find appropriate. (30 points) 3. Compute the maximum value(s) of M_C for the truck load shown below, and show the corresponding position(s) of the truck. (5 points) Compute the maximum absolute positive moment that can ever occur between B and D for the truck load shown below. Compare with maximum M_C and briefly comment (5 points) M. C Max Max Positive By uspectual Tabapas = 11 (1) Nox Centrail of Forces is at 30 mg largor value ## Problem II (for a professional engineer): (40 points) The reinforced concrete beam AB supports a reinforced concrete column monument CD as shown in Figure II. - 1. Assuming that a horizontal unit load moves on the vertical column CD as shown in the figure, draw the influence lines for the reactions at A and B, and for the moment in the beam at C. (15 points) - 2. For a combination of wind load w=10 kN/m, and an impact force from a flying object P=50 kN that can hit the column at any location between C and D, and not considering the own weight of the system, calculate the maximum vertical reaction at B (Assume that w and P can hit in either directions i.e. left to right, or right to left-, and that they can occur either individually or simultaneously). (15 points) - 3. What should be the total weight of the system (beam and column) so that an uplift at B does not occur. In this case, choose a suitable square cross-section for the beam and column that will prevent the uplift (same cross-section for beam and column) given that the density of concrete is 25 kN/m³. (10 points) Calculations and/or Diagrams (cont'd):