QUIZ 2

Spring 2002-2003
(Thursday, May 15, 2003)

CIVE 311 - STRUCTURES I CLOSED BOOK, $1^{1 ⁄ 2}$ HOURS

Name:
 NOTES

- 2 PROBLEM - 10 PAGES.
- ALL YOUR ANSWERS SHOULD BE PROVIDED ON THE QUESTION SHEETS.
- ONE EXTRA SHEET IS PROVIDED AT THE END.
- ASK FOR ADDITIONAL SHEETS IF YOU NEED MORE SPACE.
- SOME ANSWERS MAY REQUIRE MUCH LESS THAN THE SPACE PROVIDED.
- DO NOT USE THE BACK OF THE SHEETS FOR ANSWERS.
- DRAFT BOOKLET WILL BE PROVIDED; BUT DO NOT USE FOR ANSWERS.
- BOTH QUESTION SHEETS AND DRAFT BOOKLET SHOULD BE RETURNED.

YOUR COMMENT(S)

DO NOT WRITE IN THE SPACE BELOW

MY COMMENT(S)

YOUR GRADE

Problem I: _ __ 175
Problem II: _ _ _/25
Other:

TOTAL:
/100

Problem I: (75 points)

Figure I

Referring to Figure I, let $\boldsymbol{E I}=\mathbf{1 0 0 , 0 0 0} \mathbf{k N} \cdot \mathbf{m}^{2}$ throughout the beam. Neglect the own weight of the beam.

USE THE MOMENT-AREA METHOD THROUGHOUT THIS PROBLEM.

1. Let $\boldsymbol{w}=\mathbf{2 0} \mathbf{~ k N} / \mathbf{m}$ and $\boldsymbol{P}=\mathbf{5 0} \mathbf{~ k N}$

Compute the slope at $\mathrm{C}\left(\boldsymbol{\theta}_{\boldsymbol{C}}\right)$ and the vertical deflections at A and $\mathrm{C}\left(\boldsymbol{v}_{\boldsymbol{A}}\right.$ and $\left.\boldsymbol{v}_{\boldsymbol{C}}\right)$ (40 points). Indicate where the maximum downward deflection will occur between B and D and explain. (10 points)
NOTE: You can calculate slopes and deflection in whichever order you find suitable.
Calculations and Diagrams:
\qquad

Calculations and/or Diagrams (cont'd):
\qquad

Calculations and/or Diagrams (cont'd):
\qquad

Calculations and/or Diagrams (cont'd):

\qquad
2. Let $\boldsymbol{w}=\mathbf{2 0} \mathbf{k N} / \mathbf{m}$, and \boldsymbol{P} gradually increased from 0 to 200 kN (very large value). As best as you can, sketch the expected deflected shapes of the beam for the sequence of \boldsymbol{P} as shown below (NO CALCULATIONS). (15 points)

Deflected Shapes:

3. Let $\boldsymbol{w}=\mathbf{2 0} \mathbf{k N} / \mathbf{m}$ and $\boldsymbol{P}=\mathbf{5 0} \mathbf{~ k N}$

Assuming member CD to be very stiff, sketch the expected deflected shape of the beam. Can this beam analyzed using a simpler model? Show this model. (NO CALCULATIONS) (10 points)

Deflected Shapes:

CD very stiff

Your simplified model

Problem II:(25 points)

Figure II

The beam shown in Figure II is indeterminate to the first degree. Neglect the own weight. A measuring device indicated that an inflection point (zero curvature) exists at (3L/4) from A. Use this information to solve the problem (find reactions, draw shear and bending moments, and sketch deflected shape).

Calculations and Diagrams:

\qquad

Calculations and Diagrams (cont'd):

EXTRA SHEET: Continued from page

\qquad

Calculations and/or Diagrams:
\qquad

