QUIZ 2

Spring 2006-2007
(Wednesday May 9, 2007)

CIVE311 - STRUCTURES I
 CLOSED BOOK, $1 \& 1 / 2$ HOURS

Name:

ID\#: \qquad

NOTES

- 1 PROBLEM - 4 QUESTIONS - 12 PAGES.
- ALL YOUR ANSWERS SHOULD BE PROVIDED ON THE QUESTION SHEETS.
- ONE EXTRA SHEET IS PROVIDED AT THE END.
- ASK FOR ADDITIONAL SHEETS IF YOU NEED MORE SPACE.
- SOME ANSWERS MAY REQUIRE MUCH LESS THAN THE SPACE PROVIDED.
- DO NOT USE THE BACK OF THE SHEETS FOR ANSWERS.
- DRAFT BOOKLET WILL BE PROVIDED; BUT DO NOT USE FOR ANSWERS.
- BOTH QUESTION SHEETS AND DRAFT BOOKLET SHOULD BE RETURNED.
- CHECK BOXES ARE TO CONFIRM THAT YOU HAVE SOLVED A QUESTION.

YOUR COMMENT(S)

DO NOT WRITE IN THE SPACE BELOW

MY COMMENT(S)

YOUR GRADE

QUESTION 1:__/15
QUESTION 2:__155
QUESTION 3:__/10
QUESTION 4:__/20
Other:

TOTAL:

Problem I/I:

Figure I
Referring to Figure I:
$\boldsymbol{E} \boldsymbol{I}=\mathbf{2 , 0 0 0}, 000 \mathrm{kN} \cdot \mathbf{m}^{2}$ throughout the beam (except in Question 4).
$\boldsymbol{w}=\mathbf{2 0} \mathbf{~ k N} / \mathbf{m}$ and $\boldsymbol{P}=\mathbf{1 0} \mathbf{~ k N}$ throughout the problem (except in Question 4).
Neglect the own weight of the beam.

1. Compute the reactions (forces and moments) in the beam, and draw the shear and bending moment diagrams. (15 points)

SHEAR:

MOMENT:

Calculations and/or Diagrams:

2. USING THE MOMENT-AREA METHOD

Based on the moment diagram in question 1, sketch a reasonable deflected shape. (2 points)
In what follows, you can calculate slope and deflections in the order you find suitable.
Compute the slopes $\boldsymbol{\theta}$ and vertical deflections \boldsymbol{v} at all points A, B, C, D, and E. (35 points)
Compute the maximum downward deflections:
(i) between D and E. (5 points)
(ii) between B and D. (10 points)

Based on the results obtained, neatly/clearly sketch the final deflected shape and show the \qquad results obtained. (3 points)

INITIAL DEFLECTION

FINAL DEFLECTION

Calculations and/or Diagrams:

Calculations and/or Diagrams (cont'd):

\qquad

Calculations and/or Diagrams (cont'd):

\qquad

Calculations and/or Diagrams (cont'd):

\qquad

3. USING THE CONJUGATE BEAM METHOD

Show the conjugate beam, and explain how you would compute slopes and deflection of the beam in Figure I. (10 points)

Calculations and/or Diagrams:
\qquad

4. Let $\boldsymbol{w}=\mathbf{2 0} \mathbf{k N} / \mathbf{m}$ and $\boldsymbol{P}=\mathbf{0}$.

For the same beam as in Figure I (with \boldsymbol{w} only), and assuming member AD (Case 1) or member DE (Case 2) to be very stiff, sketch the expected deflected shape of the beam for each of the cases as shown below. (NO CALCULATIONS) (10 points)

Using the simplest and quickest approaches possible, calculate:
(i) Case 1: the deflections \boldsymbol{v} at points A and D. (5 points)
(ii) Case 2: the deflections \boldsymbol{v} at points A and C. (5 points)

DEFLECTION for Case 1

DEFLECTION for Case 2

Calculations and/or Diagrams:

EXTRA SHEET 1/1: Continued from page

Name:
ID\#:

Calculations and/or Diagrams:

