QUIZ 1

Spring 2003-2004

(Wednesday, March 25, 2004)

CIVE311 – STRUCTURES I CLOSED BOOK, 2 HOURS

Name: <u>ID#: 007</u>

NOTES

- 2 PROBLEMS 12 PAGES.
- ALL YOUR ANSWERS SHOULD BE PROVIDED ON THE QUESTION SHEETS.
- ONE TEXTURA SHIELDIS AURIE PROVIDED AT THE TEACH
- · ASK FOR AUDITIONAL SHEETS OF YOU NEED MORE SPACE
- SOME ANSWERS MAY REQUIRE MUCH LESS THAN THE SPACE PROVIDED.
- DO NOT USE THE BACK OF THE SHEETS FOR ANSWERS.
- DRAFT BOOKLET WILL BE PROVIDED; BUT DO NOT USE FOR ANSWERS.
- BOTH QUESTION SHEETS AND DRAFT BOOKLET SHOULD BE RETURNED.
- CHECK BOXES ARE FOR YOU TO CONFIRM THAT HAVE SOLVED A QUESTION

YOUR COMMENT(S)	· }	
()/		

DO NOT WRITE IN THE SPACE BELOW

MY COMMENT(S)	
YOUR GRADE	Problem I:
	<u>TOTAL:</u> OO /100

Problem I: (40 points)

Figure I

For the beam shown in Figure I, the own weight is neglected.

Your diagrams/sketches should include any feature/value you think is relevant or important.

1. Let w=30 kN/m and P=10 kN

- Compute the reactions in the beam, and draw the shear and bending moment diagrams and sketch the deflected shape. (20 points)
- Briefly explain the behavior of member EF. (5 points)

2

2. Let w=30 kN/m and P=0 kN

Explain how the beam behaves (namely part BD), and deduce the reactions at B and D and the moment at C, and sketch the deflected shape of the beam (do not draw shear and moment diagrams). (10 points)

(10)

2.	Let $w_D=10$ kN/m (dead load); $w_L=30$ kN/m and $P=10$ kN (live loads) Compute the maximum absolute value for R_B . (8 points) Compute R_B for live load w_L on BD only and P on A and E and compare with Problem I. (7 points)
(8)	Calculations and Diagrams: Dood WD = 10kW/m live WL = 30kW/m
	Max Ref -> By Inspection Max of DRB
	$\Rightarrow R_{B} = W_{Dx} \left(\frac{1.5 \times 15}{2} - \frac{0.5 \times 10}{2} \right)$
	$+ W_{L} \left(\frac{1.5 \times 15}{2} \right) + P_{X} \cdot 5 = L_{1} L_{1} O KN$ $ Mox+RB = L_{1} L_{1} O KN$
$\left(\overrightarrow{A}\right)$	PWLP
	RB (fum IoL.) = WL (120) + P (1.5-0.5) = 160KN (f)
	=) Sauve as in Parblem I (Same hooding)

3. Compute the maximum positive value for M_C for the following truck moving load, which can travel in one direction as shown, and compute the maximum positive moment that can ever occur between B and D. Compare and comment (15 noints)

$egin{array}{c c} 10 & 10 \ kN \\ \hline 4 & & \end{array}$
Calculations and Diagrams:
O O 1.5
Tol. Mc
-2.5 C = 2.5
Mox OMC when to is at C
=) Mc = 4x1.5+10x2.5+10x1.5= Lebhum
BD behaves like a simple beau 1 R
Max Absolute Homent
4 x lo B C D
1 5 _m 5 _m 5 _m 5 _m
R= 24 KND X=10x4 = 2.5m
24
By Ingection, Eq. Requidistant fun C
de= 0.5m d2/2=0.25m
di= 0.5m dr/2=0.25m Ra= 84 x 1.75 = 11/2 KN (Ra=11.6 KN)
Mo-Ray 75 Bre - 46.15 KNm > Mcmex (expected)
Mo slightly greater than Homes (expected)

1