
QUIZ 2Spring 2001-2002

(Thursday, May 23, 2002)

CVEV 051 – STRUCTURES I CLOSED BOOK, 1 ½ HOURS

2 PROBLEMS - 3 SHORT QUESTIONS ALL YOUR ANSWERS SHOULD BE P. ONE EXTRA SHEET IS PROVIDED A	
ONE EXTRA SHEET IS PROVIDED A	ROVIDED ON THE QUESTION SHEETS.
ASK FOR ADDITIONAL SHEETS IF	•
	CH LESS THAN THE SPACE PROVIDED.
DO NOT USE THE BACK OF THE SHE	
	ED; BUT DO NOT USE FOR ANSWERS. FT BOOKLET SHOULD BE <u>RETURNED</u> .
OUR COMMENT(S)	
OCK COMMENT(S)	
DO NOT WRITE IN	N THE SPACE BELOW
<u> DOTTOT WILLES</u>	
AY COMMENT(S)	

<u>TOTAL:</u> 100 /100

Referring to Figure I, let EI=50,000 kN.m² throughout the beam. Neglect the own weight of the beam.

USE THE MOMENT-AREA METHOD THROUGHOUT THIS PROBLEM.

1. Let w=10 kN/m, $P_1=50 \text{ kN}$, and $P_2=10 \text{ kN}$

Compute the slope at C (ϑ_C), the deflections at B and D (v_B and v_D), and the maximum downward deflection between A and C (v_{max}). (45 points)

NOTE: You can calculate slopes and deflection in whichever order you find suitable.

Calculations and Diagrams: RA = 12.5 kN (T) RC = 77.5 kN (T)

Moment Diagram: Same as Quizel (S 2001 - 2002)

H37.5

M(kNm)

A

B

C

T-75

(A)

A

B

Tinflation

Touby Poets

A

Tinflation

Touby Poets

A

Tinflation

Touby Poets

A

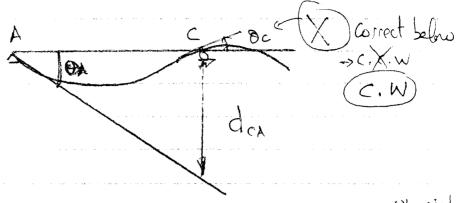
Tinflation

Touby Poets

A

Tinflation

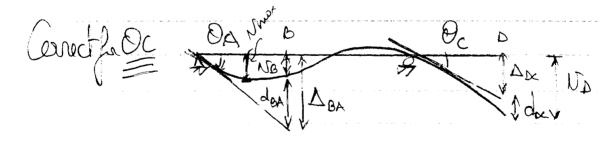
Touby Poets


Tinflation

Touby Poets

Tinflation

Tinfl


Calculations and/or Diagrams (cont'd):

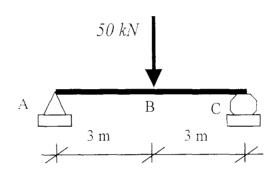
EI $deA = (\frac{1}{2})(75.6) \times (\frac{1}{3}6) + (\frac{1}{2})(-150.3)(\frac{1}{3}.3) = 25$

 $dcA = 4.5 \times 10^{3} \text{ m}$ clochwise $DA = \frac{1}{6} = 0.75 \times 10^{3} \text{ rad}$ $D_{A} = 0.75 \times 10^{3} \text{ rad}$

 $E(\Theta_{c}-\Theta_{A})=\left(\frac{1}{2}\right)(75\times6)+\left(\frac{1}{2}\right)(150\times3)\Rightarrow\Theta_{c}=\Theta_{A}=-0.75\times10^{-3}\text{ and }$

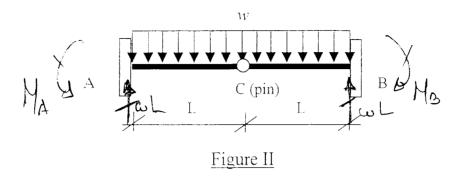
e $|\Delta_{BA}| = |O_{A}| + 3 = 2.25 \times 10^3 \text{ m}$ ok point abuse EI $d_{BA} = (\frac{1}{2})(37.5 \times 3)(\frac{1}{3} \times 3) = 56.25 \Rightarrow d_{BA} = 1.125 \times 10^3 \text{ m}$ $|\Delta_{B}| = |\Delta_{BA}| - |d_{BA}| = 1.125 \times 10^{-3} \text{ m} |V| = 1.125 \text{ mm} = V_B$

• $|\Delta x| = (3c) \times 3 = 2.25 \times 10^3 \text{ m}$ EI $dx = (\frac{1}{2})(-30 \times 3)(\frac{2}{3} \times 3) + (\frac{1}{3})(-45 \times 3)(\frac{3}{4} \times 3) = -19125 + 30c = 3.825 \text{ m}$ $|\nabla b| = |\Delta b| + |d| = 6.075 \times 10^3 \text{ m}$ $|\nabla b| = 6.075 \text{ mm} = |\nabla b|$


EI

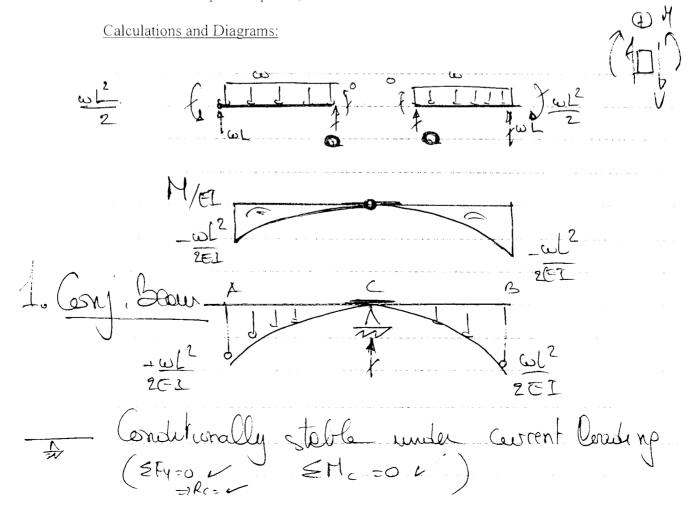
Calculations and/or Diagrams (cont'd):

Nmox(A -> C) Assure between A -, B a) E
DE=0 dAE Nmax MB
TOPE - ON - TOPE -
⇒ X= 245 m (<3) EI3 H
*
Con do N mex = DEA plex OR OLAE = N mox
OLE = = = (37.5 x 2.45 x 2.45) (x \frac{2}{3} x 7.45) = 61.28
= 0.001226m = UTuox = UE=1.23 mm

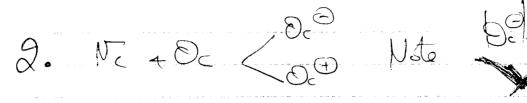

......

- Compare v_B and v_{max} from Part 1 and briefly comment. (5 points)
 Compare v_B and v_{max} from Part 1 to the mid-span deflection (v_B) of the beam (same EI=50,000 kN.m²) shown below and briefly comment. (10 points)
 NOTES:
 - In answering the questions above, you should use the values calculated as well as your engineering judgement; i.e. if it happens that the values obtained are not logical or do not make sense when compared with each other, this may be a hint that you may have done something wrong somewhere (?). If you do not have time to review and correct make the proper judgement, answer accordingly, and note this in your comment.
 - In calculating v_B below, you should take advantage of symmetry and of the fact that the slope is zero at B. This will simplify your calculation of v_B to a single line only (or, if you know the formula, you may use is directly).

Calculations and Diagrams:

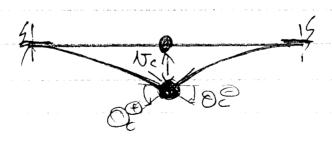

Problem II: (25 points)

NOTE: This should be a simple/quick problem (15 mn. maximum)

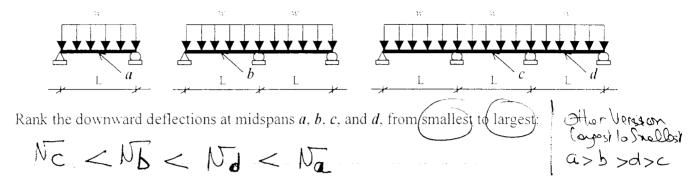

The beam shown in <u>Figure II</u> is SYMMETRICAL and is indeterminate to the first degree (assuming no axial forces and reactions exist in the beam). Let EI be the same throughout the beam and neglect its own weight. The vertical reaction at A is obviously wL (upward).

- 1. Draw the conjugate beam with the corresponding M/EI (curvature) loading. Check if this conjugate beam is stable and in equilibrium and briefly comment. (15 points)
- 2. Using the conjugate beam method, compute the deflection and slope at the pin and sketch the deflected shape. (10 points)

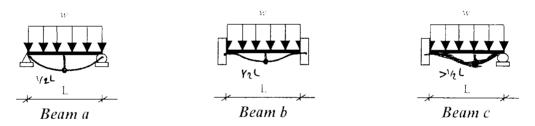
M


Calculations and Diagrams (cont'd):

Gry:
$$V_{C} = \left(\frac{1}{3}\right) \times \left(\frac{\text{cul}^2}{2\text{EI}}\right)$$


$$= -\frac{\text{wl}^3}{6\text{EI}}$$

Real
$$\mathbb{R}^2 = \mathbb{R}^3 \rightarrow \mathbb{C}$$
. $\mathbb{R}^3 \rightarrow \mathbb{C}$. \mathbb{R}^3



NOTE: In the short questions below, EI is the same throughout, except when otherwise noted.

Question 1: (5 points)

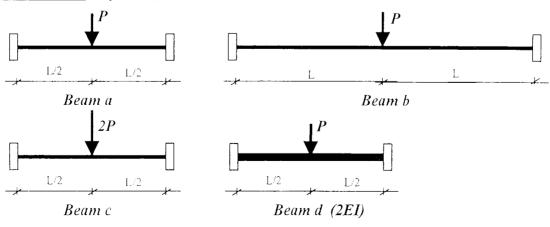
Question 2: (5 points)

Relate the maximum deflections listed below (in random order) to Beams a, b, and c. Sketch the deflection shape on the beams above, showing exactly/approximately the location of the maximum deflections.

• $(1/384)wL^4/EI$

• $(5/384)wL^4/EI$

• $(1/185)wL^4/EI$


Beam: b
Beam: a

Beam: C

other Versu

a 5/384 b /384

Question 3: (5 points)

Complete/deduce the maximum deflections under the loads for Beams b, c, and d.

- Beam a: Deflection = $PL^3/192EI$
- Beam b: Deflection = $PL^3/2L$ EI
- Beam c: Deflection = $\frac{13}{\sqrt{96}}$
- Beam d: Deflection = $\frac{P[3]}{384 EI}$