MECH 411 Introduction to Fluid Mechanics

Problem Set 5 Solution

Textbook: 5.30, 5.38, 5.45, 5.67, 3.150, 3.162, 3.175, 3.176

Problem 5.30

Variables: $[\tau]=\mathcal{M} \mathcal{L}^{-1} \mathcal{T}^{-2},[\rho]=\mathcal{M} \mathcal{L}^{-3},[\mu]=\mathcal{M} \mathcal{L}^{-1} \mathcal{T}^{-1},[\Omega]=\mathcal{T}^{-1},[R]=\mathcal{L},[\Delta r]=$ \mathcal{L}.
Wall shear stress $\tau_{w}=f(\rho, \mu, \Omega, R, \Delta r)$. Using (ρ, Ω, R) as repeating variables.
Number of dimensionless groups $=6-3=3$.

$$
\begin{aligned}
\Pi_{1} & =\frac{\tau_{w}}{\frac{1}{2} \rho \Omega^{2} R^{2}}=C_{f} \\
\Pi_{2} & =\frac{\Delta r}{R} \\
\Pi_{3} & =\frac{\rho \Omega R^{2}}{\mu}=\operatorname{Re}
\end{aligned}
$$

Therefore, in dimensionless form,

$$
\frac{\tau_{w}}{\frac{1}{2} \rho \Omega^{2} R^{2}}=\mathrm{f}\left(\frac{\Delta r}{R}, \frac{\rho \Omega R^{2}}{\mu}\right)
$$

Problem 5.38

Variables: $[d]=\mathcal{L},[D]=\mathcal{L},[U]=\mathcal{L T}{ }^{-1},[\rho]=\mathcal{M} \mathcal{L}^{-3},[\mu]=\mathcal{M} \mathcal{L}^{-1} \mathcal{T}^{-1},[Y]=\mathcal{M} \mathcal{T}^{-2}$.
The number of dimensionless groups is $6-3=3$. Using D, ρ and U as the repeating variables, the following dimensionless groups are obtained:

$$
\begin{aligned}
& \Pi_{1}=\frac{\rho U D}{\mu}=\operatorname{Re} \\
& \Pi_{2}=\frac{d}{D} \\
& \Pi_{3}=\frac{\rho U^{2} D}{Y}=\mathrm{We}
\end{aligned}
$$

Therefore, the relation in dimensionless form is

$$
\frac{d}{D}=\mathrm{f}(\mathrm{Re}, \mathrm{We})
$$

Problem 5.45

Model differential equation for chemical reaction dynamics in a plug reactor is

$$
u \frac{\partial C}{\partial x}=D \frac{\partial^{2} C}{\partial x^{2}}-k C-\frac{\partial C}{\partial t}
$$

(a) The above equation is physically homogeneous so that all terms have the units of s^{-1}. Then k has the unit of s^{-1} and D has the unit of m^{2} / s.
(b) Defining $u^{*}=u / V, x^{*}=x / L$, and $t^{*}=t /(L / V)$ then the above equation is written as

$$
\begin{aligned}
& \frac{V}{L} u^{*} \frac{\partial C}{\partial x^{*}}=\frac{D}{L^{2}} \frac{\partial^{2} C}{\partial x^{* 2}}-k C-\frac{V}{L} \frac{\partial C}{\partial t^{*}} \\
\Rightarrow & u^{*} \frac{\partial C}{\partial x^{*}}=\frac{D}{V L} \frac{\partial^{2} C}{\partial x^{* 2}}-\frac{k L}{V} C-\frac{\partial C}{\partial t^{*}}
\end{aligned}
$$

The pi groups that appear are $\frac{D}{V L}$ which is ratio of mass diffusion effect to inertia effect and $k L / V$ which is the ratio of reaction time scale to inertia time scale.

Problem 5.67

Drag \mathcal{D} on prototype of characteristic dimension d_{p} moving at velocity U_{p} in air at standard atmospheric conditions.
Model has characteristic dimension d_{m} s.t. $d_{p} / d_{m}=f$.
Under dynamically similar conditions, is $\mathcal{D}_{p}=\mathcal{D}_{m}$?
For flow conditions to be dynamically similar between model and prototype, all dimensionless variables must be equal, i.e.

$$
\Pi_{m}=\Pi_{p}
$$

where Π is a dimensionless group. The variables of interest in the problem are $\mathcal{D}, U, d, \rho, \mu$ where ρ and μ are density and viscosity of air. Using Pi theorem, or by inspection, we can express the drag in dimensionless form as follows

$$
\frac{\mathcal{D}}{\frac{1}{2} \rho U^{2} d^{2}}=\mathrm{f}\left(\frac{\rho U d}{\mu}\right)
$$

Then we must have

$$
\begin{gathered}
\left\{\frac{\rho U d}{\mu}\right\}_{m}=\left\{\frac{\rho U d}{\mu}\right\}_{p} \Rightarrow \frac{U_{p}}{U_{m}}=\frac{1}{f} \\
\left\{\frac{\mathcal{D}}{\frac{1}{2} \rho U^{2} d^{2}}\right\}_{m}=\left\{\frac{\mathcal{D}}{\frac{1}{2} \rho U^{2} d^{2}}\right\}_{p} \Rightarrow \frac{\mathcal{D}_{p}}{\mathcal{D}_{m}}=1
\end{gathered}
$$

So the drag force on the model is identical to that on the prototype. Note that a necessary condition is that the flow must be similar in other aspects such as compressibility.

Problem 5.73

Power generated by a certain windmill is $P=f(D, \rho, V, \Omega, n)$ where D is diameter, ρ is air density, Ω is rotation rate, and n is the number of blades.

The number of dimensionless groups is $6-3=3$. We choose the repeating variables to be ρ, V, and D. The dimensionless groups are

$$
\begin{aligned}
\Pi_{1} & =\frac{P}{\rho V^{3} D^{2}} \\
\Pi_{2} & =\frac{\Omega D}{V} \\
\Pi_{3} & =n
\end{aligned}
$$

Then in dimensionless form,

$$
\frac{P}{\rho V^{3} D^{2}}=\mathrm{f}\left(\frac{\Omega D}{V}, n\right)
$$

For geometrical and dynamical similarity between model and prototype we must have

$$
\left\{\frac{P}{\rho V^{3} D^{2}}\right\}_{m}=\left\{\frac{P}{\rho V^{3} D^{2}}\right\}_{p} \Rightarrow P_{p}=P_{m}\left(\frac{V_{p}}{V_{m}}\right)^{3}\left(\frac{D_{p}}{D_{m}}\right)^{2}
$$

Problem 3.150

In a reference frame moving with the airfoil, and on a streamline form a point far ahead of the airfoil to a point above the wing, Bernoulli's equation gives

$$
\begin{aligned}
& p_{a}+\frac{1}{2} \rho U_{0}^{2}=p_{t}+\frac{1}{2} \rho U_{t}^{2} \\
\Rightarrow & p_{t}=p_{a}+\frac{1}{2} \rho\left(U_{0}^{2}-U_{t}^{2}\right)
\end{aligned}
$$

Then the average pressure on top of the wing is

$$
\bar{p}_{t}=p_{a}+\frac{1}{2} \rho\left(U_{0}^{2}-\bar{U}_{t}^{2}\right)
$$

Similarly the average pressure on the bottom of the airfoil is

$$
\bar{p}_{b}=p_{a}+\frac{1}{2} \rho\left(U_{0}^{2}-\bar{U}_{b}^{2}\right)
$$

The lift is given by

$$
\mathcal{L}=\left(p_{b}-p_{t}\right) w l \cos \alpha=\frac{1}{2} \rho\left(\bar{U}_{t}^{2}-\bar{U}_{b}^{2}\right) w l \cos \alpha
$$

For a standard atmosphere the density of air varies with elevation according to

$$
\rho=\rho_{0}\left(1-\frac{z}{44329}\right)^{4.2558}
$$

where $\rho_{0}=1.225 \mathrm{~kg} / \mathrm{m}^{3}$. For $z=5000 \mathrm{~m}, \rho=0.736 \mathrm{~kg} / \mathrm{m}^{3}$. For $\bar{U}_{t}=215 \mathrm{~m} / \mathrm{s}$ and $\bar{U}_{b}=185 \mathrm{~m} / \mathrm{s}, w l=1.5 \times 18 \mathrm{~m}^{2}$, then $\mathcal{L}=119 \mathrm{kN}$.

Problem 3.162

If the volumetric flow rate and the required pressure rise per hole are respectively Q and Δp, then total required volume flow rate and pressure drop required by the blower are respectively $Q_{\text {tot }}=n Q$ and $\Delta p_{t o t}=n \Delta p$ where n is the number of holes in the table.

The volume flow rate per hole is $Q=V \frac{\pi D^{2}}{4}$ where D is the hole diameter. For $n=2592$, $D=1 / 16 \mathrm{in}, V=50 \mathrm{ft} / \mathrm{s}$, we get $Q_{\text {tot }}=2.76 \mathrm{ft}^{3} / \mathrm{s}$.

Assuming that the air is stagnant in the large manifold under the table surface with pressure p_{0}, then applying Bernoulli's equation along a streamline from the stagnant region below the table surface to the exit of a hole at which the pressure is atmospheric and the velocity is $V=50 \mathrm{ft} / \mathrm{s}$, and neglecting gravity effects,

$$
p_{0}=p_{a}+\frac{1}{2} \rho V^{2}
$$

The pressure rise (from atmospheric) required by the blower $\Delta p=\rho V^{2} / 2$. For $\rho=0.07648$ $\mathrm{lb} / \mathrm{ft}^{3}$, we get $\Delta p=0.0206 \mathrm{lbf} / \mathrm{in}^{2}$.

Problem 3.175

First we apply integral form of conservation of mass for the control volume shown in Figure:

$$
\begin{equation*}
V_{1} H=V_{2}(H-h-\Delta h) \tag{1}
\end{equation*}
$$

Next, we apply Bernoulli's equation along a streamline on the surface from (1) to (2) as shown in Figure,

$$
p_{1}+\frac{1}{2} \rho V_{1}^{2}+\rho g z_{1}=p_{2}+\frac{1}{2} \rho V_{2}^{2}+\rho g z_{2}
$$

Noting that $p_{1}=p_{2}=p_{a}$, then

$$
\begin{equation*}
V_{1}^{2}=V_{2}^{2}-2 g \Delta h \tag{2}
\end{equation*}
$$

Combining Eqs (1) and (2) leads to

$$
\begin{aligned}
V_{1}^{2} & =V_{1}^{2} \frac{H^{2}}{(H-h-\Delta h)^{2}}-2 g \Delta h \\
\Rightarrow \quad V_{1}^{2} & =2 g \Delta h\left[\frac{H^{2}}{(H-h-\Delta h)^{2}}-1\right]^{-1} \\
\Rightarrow \quad & Q_{1}=V_{1} H=\sqrt{2 g \Delta h} H\left[\frac{H^{2}}{(H-h-\Delta h)^{2}}-1\right]^{-2}
\end{aligned}
$$

For $g=9.8 \mathrm{~m} / \mathrm{s}^{2}, H=2 \mathrm{~m}, \Delta h=0.1 \mathrm{~cm}, h=0.3 \mathrm{~m}$, we get $Q=8.85 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}$.

Problem 3.176

Applying conservation of mass for the control volume shown in Figure,

$$
\begin{equation*}
V_{1} H_{1}=V_{2} H_{2} \tag{3}
\end{equation*}
$$

Applying Bernoulli's equation between (1) and (2) on a streamline on the surface as shown in Figure, and noting that $p_{1}=p_{2}=p_{a}$, then

$$
\begin{align*}
& p_{a}+\frac{1}{2} \rho V_{1}^{2}+\rho g z_{1}=p_{a}+\frac{1}{2} \rho V_{w}^{2}+\rho g z_{2} \\
\Rightarrow & V_{2}^{2}=V_{1}^{2}+2 g\left(H_{1}-H_{2}\right) \tag{4}
\end{align*}
$$

Combining Eqs (3) and (4) leads to

$$
V_{2}=\left[2 g \frac{H_{1}^{2}}{H_{1}+H_{2}}\right]^{1 / 2}
$$

For $H_{1}=5 \mathrm{~m}, H_{2}=0.7 \mathrm{~m}$, we get $V_{2}=9.27 \mathrm{~m} / \mathrm{s}$.
To determine the force on the spillway we apply conservation of momentum using the control volume shown in Figure. For steady incompressible flow with uniform flow and inlet and outlet, the x component of the integral form of the conservation of momentum (per unit width) is

$$
-F_{\text {spill }}+\int_{0}^{H_{1}} p_{1} d z-\int_{0}^{H_{2}} p_{2} d z=\dot{m}\left(V_{2}-V_{1}\right)
$$

If the flow is hydrostatic at (1) and (2), then the gage pressures $p_{1}=\rho g\left(H_{1}-z\right)$ and $p_{2}=\rho g\left(H_{2}-z\right)$, so that

$$
\begin{aligned}
F_{\text {spill }} & =\int_{0}^{H_{1}} \rho g\left(H_{1}-z\right) d z-\int_{0}^{H_{2}} \rho g\left(H_{2}-z\right) d z+\dot{m}\left(V_{1}-V_{2}\right) \\
& =\frac{1}{2} \rho g\left(H_{1}^{2}-H_{2}^{2}\right)+\rho V_{2}^{2} H_{2}\left(\frac{H_{2}}{H_{1}}-1\right) \\
& =\frac{1}{2} \rho g\left(H_{1}^{2}-H_{2}^{2}\right)-2 \rho g H_{1} H_{2} \frac{H_{1}-H_{2}}{H_{1}+H_{2}}
\end{aligned}
$$

For $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}, g=9.8 \mathrm{~m} / \mathrm{s}^{2}, H_{1}=5 \mathrm{~m}, H_{2}=0.7 \mathrm{~m}, V_{2}=9.27 \mathrm{~m} / \mathrm{s}$, we get $F_{\text {spill }}=63.8 \mathrm{kN} / \mathrm{m}$.

