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Problem Set 3 Solution

Textbook:

Conservation of mass:
Problems 3.19, 3.23, 3.25, 3.29

Conservation of momentum:
Problems 3.39, 3.53, 3.80, 3.82

Conservation of energy:
Problems 3.132, 3.137, 3.143, 3.144
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Problem 3.132

Step 1: The control volume is as shown in Figure.

Step 2: The fluid is incompressible, isothermal and steady. Assume uniform velocity and
properties at inlet and exit. Additionally assume that the change in kinetic energy be-
tween 1 and 2 is small compared to change in potential energy.

Step 3: Conservation of mass leads to uin = uout and ṁin = ṁout = ρ Q.

Apply the conservation of energy:

d

dt

∫
V

ρ

(
û +

|u2|
2

+ gz

)
dV +

∫
S

ρ

(
ĥ +

|u2|
2

+ gz

)
(u · n̂) dS =

Q̇gained − Ẇviscous +
∑

Ẇ ext

on fluid −
∑

Ẇ ext

by fluid

Then for the given conditions

∫
S

ρ

(
ĥ +

|u2|
2

+ gz

)
(u · n̂) dS = −Ẇviscous −

∑
Ẇ ext

by fluid

⇒ ρ Qg (zout − zin) = −ρ Qg hf − Ẇturbine

⇒ Ẇturbine = −ρ Qg
(
CQ2

)
+ ρ Qg H

The turbine work is maximum when d(Ẇturbine)/dQ = 0 leading to an optimal Qoptimal =√
H/(3C).
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Problem 3.137

Step 1: The control volume is as shown in Figure.

Step 2: The fluid is incompressible, isothermal and steady. Assume uniform velocity and
properties at inlet and exit.

Step 3: Conservation of mass leads to Vin = VoutAout/Ain if Ain/Aout >> 1, then Vin ' 0.
Note that “in” refers to the surface and not that inlet of the suction pipe at which the
pressure is unknown.

Apply the conservation of energy:

d

dt

∫
V

ρ

(
û +

|u2|
2

+ gz

)
dV +

∫
S

ρ

(
ĥ +

|u2|
2

+ gz

)
(u · n̂) dS =

Q̇gained − Ẇviscous +
∑

Ẇ ext

on fluid −
∑

Ẇ ext

by fluid

Then for the given conditions

∫
S

ρ

(
ĥ +

|u2|
2

+ gz

)
(u · n̂) dS = −Ẇviscous −

∑
Ẇ ext

by fluid

⇒ ṁ

2

(
V 2

out − V 2
in

)
+ ṁ g (zout − zin) = −ṁ g hf + Ẇpump

⇒ Ẇpump = ṁ

[
V 2

out

2
+ g (zout + hf − zin)

]

With ṁ = ρ Vout Aout = 167.7 lbm/s, Vout = 120 ft/s, g = 32.2 ft/s2, ρ = 64 lb/ft3. Then
Ẇpump = 40274 lbf.ft/s so that that motor driving the pump must be Ẇpump/ηpump = 97
hp.
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Problem 3.143

Step 1: The control volume is as shown in Figure.

Step 2: The fluid is an ideal gas. The flow is compressible and unsteady. Assume spatially
(but not temporally) uniform properties in the control volume. Neglect potential energy
changes. Assume the velocity of the fluid inside the tank to be zero. Assume uniform
properties at inlet and that the inlet kinetic energy is very small compared to inlet en-
thalpy, i.e. V 2

in/2 << ĥin .

Step 3: Conservation of mass leads to

d

dt

∫
V

ρ dV = ṁin

⇒ d

dt
(ρV) = ṁin

⇒ V dρ

dt
= ṁin

Apply the conservation of energy:

d

dt

∫
V

ρ

(
û +

|u2|
2

+ gz

)
dV +

∫
S

ρ

(
ĥ +

|u2|
2

+ gz

)
(u · n̂) dS =

Q̇gained − Ẇviscous +
∑

Ẇ ext

on fluid −
∑

Ẇ ext

by fluid

Under the stated assumptions, the energy equation reduces to

d

dt

∫
V

ρ û dV − ṁin ĥin = 0

⇒ d

dt

∫
V

ρ CvT dV − ṁin ĥin = 0

⇒ Cv V
d

dt
(ρ T )− ṁin ĥin = 0

⇒ Cv ρV dT

dt
+ Cv T V dρ

dt
− ṁin Cp Tin = 0

Noting that from conservation of mass V dρ
dt

= ṁin, then

⇒ Cv ρV dT

dt
= ṁin Cp Tin − ṁin Cv T

The initial rate of increase of temperature in the tank is

dT

dt

∣∣∣∣∣
t=0+

=
ṁin (Cp − Cv) Tin

ρ0 V Cv

= 3.2 C/s

where ρ0 = p0/RT0 = 200/(0.287× 293) = 2.3783 kg/m3 is the initial density in the tank.
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Problem 3.144

Step 1: The control volume is as shown in Figure.

Step 2: The fluid is incompressible and steady. Assume uniform properties at sections 1,
2 and 3. The flow area A1 is much larger than A2 so that V1 ' 0. The friction head losses
are between 1 and 2. The losses between 2 and 3 are negligible.

Step 3: Conservation of mass between 1 and 2 leads to

V1 ' 0

Conservation of energy:

d

dt

∫
V

ρ

(
û +

|u2|
2

+ gz

)
dV +

∫
S

ρ

(
ĥ +

|u2|
2

+ gz

)
(u · n̂) dS =

Q̇gained − Ẇviscous +
∑

Ẇ ext

on fluid −
∑

Ẇ ext

by fluid

In order to determine the exit angle θ that maximizes the horizontal distance so that
z3 − z2 is constant is obtained by applying Newton’s second law for a small fluid element
of volume δV and fixed mass ρ δV . Noting that the only force acting on this element is
gravity, then

d

dt
(ρ δV u) = ρ δV g

du

dt
= g

The horizontal and vertical components are

dw

dt
= −g ⇒ w − w0 = −gt ⇒ w − V2 sin θ = −gt

du

dt
= 0 ⇒ u = u0 = V2 cos θ ⇒ x = V2 cos θ t

At 3 w = 0, x = R/2 where R is the horizontal range to be maximized. At 3, eliminating
t from the above two equations leads to

R = 2 V2 cos θ
V2 sin θ

g
=

V 2
2 sin 2θ

g

It is clear that R is maximum when θ = π/4.

To determine V2, we first apply the conservation of energy between 2 and 3:

ṁ

(
V 2

3

2
+ gz3

)
− ṁ

(
V 2

2

2
+ gz2

)
= 0

⇒ V 2
2 − V 2

3 = 2 g (z3 − z2)

To relate V3 to V2, we apply conservation of momentum in the x direction for the control
volume consisting of the jet 2-3, we get

ṁ V2 cos θ = ṁV3
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Substituting in the energy equation, we get

ṁ

(
V 2

3

2
+ gz3

)
− ṁ

(
V 2

2

2
+ gz2

)
= 0

⇒ V 2
2

(
1− cos2 θ

)
= 2 g (z3 − z2)

⇒ V 2
2 sin2 θ = 2 g (z3 − z2)

With θ = π/4, we get

V 2
2 = 4 g (z3 − z2)

With z3 − z2 = 25 m, we get V2 = 31.32 m/s.

To determine the power delivered to the pump, we apply conservation of energy between
1 and 2

ṁ

(
ĥ2 +

V 2
2

2
+ gz2

)
− ṁ

(
ĥ1 +

V 2
1

2
+ gz1

)
= Ẇpump − ṁ g hf

⇒ ṁ

(
CvT2 +

p2

ρ2

+
V 2

2

2
+ gz2

)
− ṁ

(
CvT1 +

p1

ρ1

+
V 2

1

2
+ gz1

)
= Ẇpump − ṁ g hf

The flow is assumed to be isothermal T1 = T2, also p1 ' p2 = pa, V1 ' 0, then

Ẇpump = ρ V2
πD2

2

2

[
V 2

2

2
+ g (z2 − z1 + hf )

]
= 26.245 kW
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