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Problem Set 3 Solution

Textbook:

Conservation of mass:
Problems 3.19, 3.23, 3.25, 3.29

Conservation of momentum:
Problems 3.39, 3.53, 3.80, 3.82

Conservation of energy:
Problems 3.132, 3.137, 3.143, 3.144
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Problem 3.19

Step 1: The control volume is as shown in Figure.

control volume

2 m/s

L

Figure 1: Control Volume Selection.

Step 2: The fluid is incompressible, i.e. constant density. The flow is steady.

Step 3: Apply the conservation of mass:

d

dt

∫
V
ρ dV +

∫
S
ρu · n̂ dS = 0

⇒ 0 + ρ uoutAout − ρ uinAin = 0

⇒ uout LW = uinHW

⇒ L = H
uin
uout

With H = 20 cm, uin = 2 m/s, and uout = 8 mm/s, then L = 50 m.
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Problem 3.23

Step 1: The control volume is as shown in Figure. The left side of the control surface is
moving with the serum.

D1

D2
V2

control volume

Figure 2: Control Volume Selection.

Step 2: The fluid is incompressible; i.e. constant density. The flow is unsteady so that
we have to take care of the rate of change of mass inside the control volume.

Step 3: Apply the conservation of mass:

d

dt

∫
V
ρ dV +

∫
S
ρurel · n̂ dS = 0

Notice that the velocity in the second term is the velocity of the fluid at the control
surface relative to the control surface. With that in mind and noting the rate of change
of volume is V̇ = d(A1 x)/dt = A1dx/dt = −A1uplunger, then

−ρA1 uplunger + ρ uout,needleAout,needle + ρ uout,leakageAout,leakage = 0

⇒ −ρA1 uplunger + ρ V̇serum + ρ V̇leakage = 0

where V̇serum = uout,needleAout,needle.

(a) For the case of no leakage,

uplunger =
V̇serum
A1

=
V̇serum
πD2

1/4

With V̇serum = 6 cm3/s = 0.3661 in3/s and A1 =0.4418 in2, then uplunger =0.8287 in/s.

(b) For the case of leakage where V̇leakage = 0.1V̇serum, then

uplunger =
1.1 V̇serum

A1

=
1.1 V̇serum
πD2

1/4

Then uplunger =0.9115 in/s.
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Problem 3.25

Step 1: The control volume is as shown in Figure. The upper side of the control surface
extends to the limit H →∞.
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z

control volume

Figure 3: Control Volume Selection.

Step 2: The fluid is incompressible; i.e. constant density. The flow is steady.

Step 3: Apply the conservation of mass:

d

dt

∫
V
ρ dV +

∫
S
ρurel · n̂ dS = 0

⇒ 0 +
∫ H

L/2
ρ u b dz −

∫ H

0
ρU0 b dz = 0

⇒ 0 +
∫ H

L/2
ρ (u− U0) b dz −

∫ L/2

0
ρU0 b dz = 0

⇒
∫ H

L/2
(u− U0) dz = U0

L

2

With u ' U0 + ∆U e−z/L, then

lim
H→∞

∫ H

L/2
∆U e−z/L dz = U0

L

2

⇒ ∆U Le−
1
2 = U0

L

2

⇒ ∆U = U0
e

1
2

2
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Problem 3.29

Step 1: The control volume is as shown in Figure.

control volume

Figure 4: Control Volume Selection.

Step 2: The fluid is compressible and unsteady. The control volume has a constant vol-
ume V , but the density is variable in time but not in space so that ρ = ρ(t).

Step 3: Apply the conservation of mass:

d

dt

∫
V
ρ dV +

∫
S
ρurel · n̂ dS = 0

Since the density is a function of time only, then

V dρ
dt

+ ṁout = 0

⇒ V dρ
dt

+ C ρ = 0

⇒ dρ

ρ
= −CV

Integrating from t = 0 to t, then

ln

(
ρ

ρ0

)
= −CV t

⇒ ρ(t) = ρ0 e
−C
V t

Ideal gas law gives ρ0 = p0
RT0

. Also ṁout,0 = Cρ0 so that C = ṁout,0

ρ0
. The tank volume is

V = 4
3
π
(
D
2

)3
. The time ∆t it takes for the density to drop by a factor of 2 is

ln

(
1
2
ρ0

ρ0

)
= −CV ∆t

⇒ ∆t = −
4
3
π
(
D
2

)3

ṁout,0

ρ0

ln
(

1

2

)

⇒ ∆t = −
4
3
π
(
D
2

)3

ṁout,0RT0

p0

ln
(

1

2

)
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Problem 3.39

Step 1: The control volume is as shown in Figure.

control volume

F

Figure 5: Control Volume Selection.

Step 2: The fluid is incompressible and steady.

Step 3: Apply the conservation of mass:

d

dt

∫
V
ρ dV +

∫
S
ρurel · n̂ dS = 0

Leading to ṁ2 = ṁ3 = 1
2
ṁ1.

Apply the conservation of momentum:

d

dt

∫
V
ρu dV +

∫
S
ρuurel · n̂ dS =

∑
Fext

Taking the x component of the above equation leads to

0 + u2 ṁ2 cos
θ

2
+ u3 ṁ3 cos

θ

2
− u1 ṁ1 = −F

With u1 = u2 = u3 and ṁ2 = ṁ3 = 1
2
ṁ1 we get

cos
θ

2
=
u1 ṁ1 − F
u1ṁ1

= 1− F

u1ṁ1

With u1 =6 m/s and ṁ1 = ρ u1 h1 = 240 kg/s/m. Then θ = 81 deg.
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Problem 3.53

Step 1: The control volume is as shown in Figure. The forces applied on the control
volume are due to pressure and viscous drag (friction at the wall.)

control volume

Figure 6: Control Volume Selection.

Step 2: The fluid is incompressible and steady.

Step 3: Apply the conservation of mass:

d

dt

∫
V
ρ dV +

∫
S
ρurel · n̂ dS = 0

Noting that the unsteady term is zero and dS = 2π r dr, we get the following results

• For Laminar flow: umax = 2U0. (Please derive this result.)

• For Turbulent flow: umax = 60
49
U0. (Please derive this result.)

Apply the conservation of momentum:

d

dt

∫
V
ρu dV +

∫
S
ρuurel · n̂ dS =

∑
F

⇒ d

dt

∫
V
ρu dV +

∫
S
ρuurel · n̂ dS = −

∫
S
pgage n̂ dS + Fdrag

Taking the x component of the momentum equation

0 + ρ
∫ R

0
u2

2 2π r dr − ρ
∫ R

0
U2

0 2π r dr = −(p2 − p1) π R
2 − Fdrag

Then

• For Laminar flow:

Fdrag = πR2

[
(p1 − p2)−

ρU2
0

3

]
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• For Turbulent flow:

Fdrag = πR2

[
(p1 − p2)−

ρU2
0

49

]

Turbulent flows experience larger viscous drag at the wall.
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Problem 3.80

Step 1: The control volume is as shown in Figure. The forces applied on the control
volume are due to pressure which is assumed to be hydrostatic. Viscous forces at the
river bottom are neglected.

control volume

V1 V2

Figure 7: Control Volume Selection.

Step 2: The fluid is incompressible and steady.

Step 3: Apply the conservation of mass:

d

dt

∫
V
ρ dV +

∫
S
ρurel · n̂ dS = 0

Noting that the unsteady term is zero then V2 = V1
h1

h2
.

Apply the conservation of momentum:

d

dt

∫
V
ρu dV +

∫
S
ρuurel · n̂ dS =

∑
F

⇒ d

dt

∫
V
ρu dV +

∫
S
ρuurel · n̂ dS = −

∫
S
pgage n̂ dS + Fviscous + Fobstacle

Noting that the flow is steady and the viscous drag is neglected and that the velocity at
sections 1 and 2 is uniform. Taking the x component of the momentum equation

0 + ṁ V2 − ṁ V1 = −
∫ h2

0
p2,gage b dz +

∫ h1

0
p1,gage b dz − Fobstacle

Note that if the flow exerts a force Fobstacle on the obstacle, then the obstacle exerts a force
of −Fobstacle on the fluid. Noting that the hydrostatic pressure is p1,gage = ρ g (h1− z) and
p2,gage = ρ g (h2 − z), then

Fobstacle = ṁ (V1 − V2) +
ρ g b

2

(
h2

1 − h2
2

)
= ρ V1 b h1

(
V1 − V1

h1

h2

)
+
ρ g b

2

(
h2

1 − h2
2

)
= −ρ V 2

1 b h1

(
h1

h2

− 1

)
+
ρ g b

2

(
h2

1 − h2
2

)

9



Problem 3.82

Step 1: The control volume, shown in Figure, includes the car and the inlet and outlet
jets. The reference frame is attached to the accelerating car and is therefore non-inertial.

Vc, ac

x

control volume fixed in reference frame attached to accelerating car

Vj − Vc

Vj − Vc

Vj − Vc

Figure 8: Control Volume Selection.

Step 2: The fluid is incompressible. In the chosen reference frame, the flow is steady.

Step 3: Apply the conservation of mass for the jet in the accelerating reference frame.

ρ(Vj − Vc)Aj = ρVeAe

where Aj = πD2
j/4 and Ve and Ae are respectively the jet exit velocity in the accelerating

reference frame and flow area. Ve may be determined by applying Bernoulli’s equation
along a stream in the accelerating reference frame, assuming the jet flow to be inviscid,
steady and of constant density. Then

p1 +
1

2
ρ(Vj − Vc)2 + ρgz1 = p2 +

1

2
ρV 2

e + ρgz2

Neglecting effects of gravity (this means that ρg(z2 − z1) <<
1
2
ρ(Vj − Vc)2) and noting

that p1 = p2 = pa, we conclude that Ve = (Vj − Vc) and consequently Ae = Aj.

Next we apply conservation of momentum in an accelerating reference frame, and consid-
ering the x component only

∑
Fx −mcac =

∂

∂t

∫
CV

ρux dV +
∫
CS
ρux(ur · n̂) dS

where mc and ac are respectively the mass and acceleration of the car, ux is the x− com-
ponent of the velocity in the accelerating reference frame, and ur is the velocity of the
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flow with respect to the control surface.

Since the flow is steady in the car reference frame, and the forces due to air drag and
wheel friction with ground are neglected, then

−mcac =
∫
CS
ρux(ur · n̂) dS

Noting that
∫
CS ρ(ur · n̂) dS = −ρ(Vj − Vc)Aj for the inlet flow and ρ(Vj − Vc)Aj for the

outlet flow, where Vj − Vc is the speed of the jet relative to the car moving at Vc. And
noting that ux = −(Vj − Vc) for the inlet flow and (Vj − Vc) for the outlet flow, then

−mcac = 2ρ(Vj − Vc)2Aj

It is important to note the pressure is atmospheric throughout the control surface. In
particular, the pressure across a free straight jet characterized by large Reynolds number
Re = ρVjDj/µ >> 1 is atmospheric. This, along with Bernoulli’s equation, will be ex-
plained and discussed further when we study inviscid flows.

Another important thing to look at is applying the conservation of mass for the jet by
taking a fixed control mass with its right side fixed at the jet exit from the nozzle and
its left side moving with the car. How will the conservation of mass look like? Can we
neglect the transient term in this case?

11


