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Problems on Inviscid Flow

“Advanced Fluid Mechanics Problems” by Shapiro and Sonin
Problems 4.4, 4.7, 4.8, 4.9, 4.10, 4.13, 4.18, 4.19, 4.21, 4.23, 4.24, 4.28.

Problem 4.4

A nozzle with exit area A2 is mounted at the end of a pipe of area A1, as shown. The
nozzle converges gradually and we assume the flow in it is (i) approximately uniform over
any particular station x, (ii) incompressible and (iii) inviscid. Gravitational effects are,
furthermore, taken as negligible. The volume flow rate in the nozzle is given as Q and
the ambient pressure is pa.
(a) Derive an expression for the gage pressure at a station where the area is A(x).
(b) Show, by integrating the x-component of the pressure force on the nozzle’s interior
walls, that the net x−component of the force on the nozzle due to the flow is independent
of the specific nozzle contour and is given by

F = ρQ2 (A1 − A2)
2

2A1A2
2

(c) The expression in (b) predicts that F is in the positive x direction regardless of whether
the nozzle is converging or diverging. Explain.
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Figure 1: Schematic of Problem 4.4
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Problem 4.7

An engine carburetor consists of a duct of diameter D with a small metering jet of diam-
eter d through which fuel enters from the float bowl. The fuel in the bowl is at the same
level as the jet. The engine draws air into the duct from the ambient atmosphere, which
is at pressure pa and density ρa. The fuel streams breaks into droplets after it exits from
the metering jet, and vaporized before it reached the engine.

Neglecting friction and compressibility and assuming no losses in the flow of air from the
ambient atmosphere to the metering jet, find d/D for a fuel-air mass flow ratio of α and
densities ρa and ρf .
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Figure 2: Schematic of Problem 4.7
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Problem 4.8
A constant force F is applied to a simple cylindrical bellows of diameters D1. The air
flows out of the bellows via a nozzle of diameter D2, to the ambient atmosphere.
(a) If the air flow is incompressible (density ρ) and inviscid, derive an expression for the
time it takes to exhaust a volume V of air from the bellows.
(b) Compute this time for STP air if V = 1 liter, D1 = 10 cm, D2 = 1 cm and F = 2 kgf.
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Figure 3: Schematic of Problem 4.8
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Problem 4.9
Consider a furnace of height H with a tall cylindrical smoke stack of diameter d (d << H)
and height h (h >> H). Air, an ideal gas (p = ρRT ), enters the furnace at atmospheric
density and temperature and at local atmospheric pressure. Between stations 1 and 2,
heat is added at constant pressure and the air temperature is raised by an amount ∆t.
Thereafter, heat addition is negligible and the air rises through the stack at a sensibly
constant density.
(a) On the assumption that viscous effects are negligible, derive an expression for the
steady mass flow rate of air drawn by a stack of given height, h, in terms of the temper-
ature rise in the furnace.
(b) If the chimney were capped off at the top, what would be the pressure differential
across the cap, assuming that ∆T would not be altered by the flow stoppage ?

Note: The height h of the stack is small compared with the length RTa/g over which the
atmosphere density falls by 1/e. Hence gravitational density changes are neglected in this
problem.

1 2

3

h

H

d
g

Ta Ta + ∆T

Ta, pa

d << H << h

Figure 4: Schematic of Problem 4.9
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Problem 4.10
A vessel of volume V originally contains a perfect gas at pressure pi > pa and temper-
ature T = Ta where pa and Ta are pressure and temperature of the ambient air outside
the vessel. At t = 0, a small, streamlined nozzle with exit area A is opened, and the
gas slowly escapes to the ambient atmosphere. The gas obeys the law p = ρRT , where
p is the absolute pressure and T the absolute temperature, and the flow is quasi-steady ,
i.e. the flow out through the nozzle changes so slowly that the unsteady term in Euler’s
equation is negligible compared to other terms.

In what follows, you may assume that the gage pressure p′ = p − pa is always small in
the sense that p′/pa << 1 and use approximations accordingly. Gravitational effects are
to be neglected.

Obtain a solution for the gage pressure p′(t) in the vessel as a function of time for the
following two limiting cases:
(a) The flow rate out is so small, and the heat transfer to the gas inside so effective, that
the gas inside essentially maintains itself at the ambient temperature Ta. The flow out
the nozzle is, however, inviscid.
(b) The depressurization is rapid, and the vessel thermally insulated, and as a result the
gas inside the vessel expands isentropically, i.e. the absolute pressure and density in the
vessel at any instant are related by p/pi = (ρ/ρi)

γ where γ is the ratio of the gas’s specific
heats. The flow out the nozzle is also isentropic (inviscid).
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Figure 5: Schematic of Problem 4.10
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Problem 4.13
The sketch shows a steady, free-surface, non-viscous, two-dimensional flow of water over
the bed of a channel. The free surface is at uniform atmospheric pressure, pa. At any
section the channel makes the local angle α with the horizontal, the local water velocity
is V , and the local depth of water above the bed is h.

The angle α is everywhere small, and rates of change of α are also small. This permits the
assumption that cosα ' 1, (ii) the vertical components of fluid acceleration are negligible,
and (iii) the velocity V is uniform over each cross section.
(a) Demonstrate that the slop of the free surface is given by

dz

dx
' V 2/gh

V 2/gh− 1
tanα

(b) discuss the difference between “’subcritical’ flow (V 2 < gh) and “supercritical” flow
(V 2 > gh).
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Figure 6: Schematic of Problem 4.13
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