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Problem Set 4 Solution: Viscous Flow

“Advanced Fluid Mechanics Problems” by Shapiro and Sonin
Problems 6.1, 6.3, 6.7, 6.10, 6.16, 6.20, 6.21.

Problem 6.1
Refer to Figure 1 for the schematic. The flow is steady.
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Figure 1: Schematic of Problem 6.1

(a) We assume that the flow is steady and fully developed in the channel between the
piston and cylinder. The z−component of the momentum equation is

0 = −∂p

∂z
+ µ

(
∂2u

∂r2
+

1

r

∂u

∂r

)

where gravity is neglected. We can neglect the term 1
r

∂u
∂r

because

1
r

∂u
∂r

∂2u
∂r2

' h

R
<< 1

where R = D/2. From the momentum conservation in the r−direction, we can show that

∂p

∂r
' 0 ⇒ p = p(z) and

∂p

∂z
=

dp

dz

Therefore equation (1) reduces to

∂2u

∂r2
=

1

µ

dp

dz

subject to the boundary conditions

u = 0 at r = R− h

u = 0 at r = R
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The velocity is then given by

u(r) =
1

2µ

dp

dz

(
r2 − (2R− h)r + R(R− h)

)
The volume flow rate is then given by

Q = 2π

(
R− h

2

)∫ h

R−h
u(r)dr

= −2π

(
R− h

2

)
h3

12µ

dp

dz

We conclude from the last equation that dp/dz is constant,

dp

dz
= −p1 − pa

L
= − Mg

πR2L

where the shear force on the piston acting vertically upwards has been neglected. The
leakage volume flow rate is finally given as

Q =
Mgh3

6µR2L

(
R− h

2

)
' Mgh3

6µRL
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Problem 6.3
Refer to Figure 2 for the schematic. The flow is steady. 
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Figure 2: Schematic of Problem 6.3

(a) We assume that the flow is steady and fully developed in the channel between the
upper and lowe plates away from the center, i.e. for r > d/2. The momentum equation
in the r−direction is

ρ

(
u
∂u

∂r
+ w

∂u

∂z

)
= −∂p

∂r
+ µ

(
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2
+

∂2u

∂z2

)

The ratio of the dominant inertia term to the dominant diffusion term is

ρu∂u
∂r

µ∂2u
∂z2

'
ρ ū2

r

µ ū
h2

=
ρūh

µ

h

r
= Reh

h

r

(b) Noting that Q = 2πrhū, the flow may be assumed to be inertia free if

ρūh

µ

h

r
<< 1

⇒ Q

2πrh

ρh

µ

h

r
<< 1

⇒ r2 >>
ρQh

2πµ

⇒
√

ρQh

2πµ
<< r ≤ R

(c) The inertia free flow is governed by

∂2u

∂z2
=

1

µ

dp

dr
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subject to the boundary conditions

u = 0 at z = 0

u = 0 at z = h

The velocity is then given by

u =
1

2µ

dp

dr

(
z2 − zh

)
The volume flow rate is

Q =
2πr

2µ

dp

dr

∫ h

0

(
z2 − zh

)
dz

= −πrh3

6µ

dp

dr

The pressure distribution is therefore governed by

dp

dr
= −6µQ

πh3

1

r

⇒ p(r)− po = −6µQ

πh3
ln
(

2r

d

)
At r = D/2, the gage pressure is zero so that

Q =
πpoh

3

6µ ln(D/d)

The force is balance by the pressure distribution

F =
∫ D/2

d/2
p(r) 2πrdr

= 2π
∫ D/2

d/2
po

[
1− ln(2r/d)

ln(D/d)

]
r dr

=
πD2po

4

[
1− (d/D)2

2 ln(D/d)

]
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Problem 6.7
Refer to Figure 3 for the schematic. The flow is steady.
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Figure 3: Schematic of Problem 6.7

(a) We apply the integral form of the conservation of mass for a control volume of height
h ahd width dx,

Q +
dQ

dx
dx + qw dx−Q = 0

⇒ dQ

dx
= −wq = −kw [p(x)− pa] (1)

(b) The x−component of the momentum equation is

0 = −dp

dx
+ µ

∂2u

∂y2

subject to the conditions u = 0 at y = 0 and y = h. The solution is

u =
1

2µ

dp

dx

(
y2 − hy

)
leading to

Q = w
∫ h

0
u dy = −wh3

12µ

dp

dx

Differentiating in x,

dQ

dx
= −wh3

12µ

d2p

dx2
(2)

⇒ d2p

dx2
=

12µk

h2
[p(x)− pa] (3)

subject to the conditions

p = p1 at x = 0

p = pa at x = L
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(c) In this case we have a conventional Poiseuille flow. If q is very small, then k is very
small. From equation (3)

d2p

dx2
' 0

⇒ dp

dx
=

pa − p1

L

Therefore the location at which the gage pressure reaches half the inlet gage pressure is
x∗ = L/2.

(d) In this case Q(x = L) ' 0. A first order approximation in this xase is to assume that
Q varies linearly from Q = Q0 at x = 0 to Q = 0 at x = L,

dQ

dx
' −Q0

L

⇒ Q ' Q0

(
1− x

L

)
From equation (2),

wh3

12µ

d2p

dx2
=

Q0

L

Leading to the pressure distribution

p(x) =
6µQ0

wh3L
x2 +

(
pa − p1

L
− 6µQ0

wh3

)
x + p1 (4)

To get Q0, we integrate equation (1),

0−Q0 =
∫ L

0
−kw [p(x)− pa] dx

⇒ Q0 = kw
∫ L

0

[
6µQ0

wh3L
x2 +

(
pa − p1

L
− 6µQ0

wh3

)
x + p1 − pa

]
dx

⇒ Q0 =
wh3(p1 − pa)

2µL + 2h3/kL
' wh3(p1 − pa)

2µL

Note kL >> h3/µL in this case. Substituting Q0 in equation (4), we get

p(x)− pa

p1 − pa

= 3
x2

L2
− 4

x

L
+ 1

Now we find x∗ such that (p(x∗)− pa)/(p1 − pa) = 1
2
, resulting in x∗ = 0.14L.

(e) The differential equation

d2p∗

dx2
= αp∗(x)

where p∗(x) = p(x)−pa

p1−pa
and α = 12µk

h2 have the general solution

p∗(x) = C1e
x
√

α + C2e
−x
√

α
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subject to the boundary conditions p∗ = 1 at x = 0 and p∗ = 0 at x = L, we get

C1 + C2 = 1

C1e
L
√

α + C2e
−L

√
α = 0

leading to

p(x)− pa

p1 − pa

=
e(L−x)

√
α − e−(L−x)

√
α

eL
√

α − e−L
√

α

• case 1: in the limit k → 0, i.e. α = 0,

p(x)− pa

p1 − pa

=
L− x

L

at x = L/2, we get p(x)−pa

p1−pa
= 1/2.

• case 2: in the limit L
√

α >> 0, ,

p(x)− pa

p1 − pa

= e−x
√

α

at x = ln(2)√
α

, we get p(x)−pa

p1−pa
= 1/2.
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Problem 6.10
Refer to Figure 4 for the schematic. 
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Figure 4: Schematic of Problem 6.10

(a) the ratio of the inertia to viscous forces is

ρu∂u
∂x

µ∂2u
∂y2

∼
ρU2

x

µ U
α2x2

=
ρUx

µ
α2 = Rex α2

Therefore the criteria for modeling the flow as inertia free is to have Rex α2 << 1.
(b) Locally Couette flow. The governing equation is

0 = −dp

dx
+ µ

∂2u

∂y2

subject to the boundary conditions

u = 0 at y = 0

u = U at y = h

The velocity is then given by

u = − 1

2µ

dp

dx

(
y2 − yh

)
+ U

y

h

The volume flow rate is given by

Q =
∫ h

0
udy =

h3

12µ

dp

dx
+

Uh

2

=
α3x3

12µ

dp

dx
+

Uαx

2

By applying the integral form of the conservation of mass for the control volume shown
in Figure 4, we get1

Q = 0

Then

dp

dx
== −6µU

α2

1

x2

⇒ p− pL =
6µU

α2

L− x

xL

1It may be easier to get the result in a reference frame moving with the blade.
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Problem 6.16
Refer to Figure 5 for the schematic.
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Figure 5: Schematic of Problem 6.16

(a) We apply conservation of mass for a control volume shown in the figure,

∂

∂t

∫
CV

ρ dV +
∫

CS
ρu · n̂ dS = 0

⇒ ∂

∂t
(ρh dx) + ρ

dQ

dx
dx = 0

⇒ ∂h

∂t
+

dQ

dx
= 0 (5)

where Q is the volume flowrate. The differential form of the momentum conservation in
the x−direction is

0 = µ
∂u2

∂y2
+ ρg sin θ

where the pressure gradient is zero and the inertia term is neglected. The boundary
conditions are

u = 0 at y = 0

τ = µ
∂u

∂y
= 0 at y = h

The velocity is then given by

u =
ρg sin θ

µ

(
hy − y2

2

)
The volume flow rate is

Q =
∫ h

0
u dy =

ρg sin θ

3µ
h3

⇒ dQ

dx
=

ρg sin θ

µ
h2dh

dx
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Combining with equation (5), we get

∂h

∂t
+

ρg sin θ

µ
h2dh

dx
= 0

(b)
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