Problem Set 4 Solution: Viscous Flow

"Advanced Fluid Mechanics Problems" by Shapiro and Sonin
Problems 6.1, 6.3, 6.7, 6.10, 6.16, 6.20, 6.21.

Problem 6.1

Refer to Figure 1 for the schematic. The flow is steady.

Figure 1: Schematic of Problem 6.1
(a) We assume that the flow is steady and fully developed in the channel between the piston and cylinder. The z-component of the momentum equation is

$$
0=-\frac{\partial p}{\partial z}+\mu\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}\right)
$$

where gravity is neglected. We can neglect the term $\frac{1}{r} \frac{\partial u}{\partial r}$ because

$$
\frac{\frac{1}{r} \frac{\partial u}{\partial r}}{\frac{\partial^{2} u}{\partial r^{2}}} \simeq \frac{h}{R} \ll 1
$$

where $R=D / 2$. From the momentum conservation in the r-direction, we can show that

$$
\frac{\partial p}{\partial r} \simeq 0 \Rightarrow p=p(z) \text { and } \frac{\partial p}{\partial z}=\frac{d p}{d z}
$$

Therefore equation (1) reduces to

$$
\frac{\partial^{2} u}{\partial r^{2}}=\frac{1}{\mu} \frac{d p}{d z}
$$

subject to the boundary conditions

$$
\begin{aligned}
u & =0 \text { at } r=R-h \\
u & =0 \text { at } r=R
\end{aligned}
$$

The velocity is then given by

$$
u(r)=\frac{1}{2 \mu} \frac{d p}{d z}\left(r^{2}-(2 R-h) r+R(R-h)\right)
$$

The volume flow rate is then given by

$$
\begin{aligned}
Q & =2 \pi\left(R-\frac{h}{2}\right) \int_{R-h}^{h} u(r) d r \\
& =-2 \pi\left(R-\frac{h}{2}\right) \frac{h^{3}}{12 \mu} \frac{d p}{d z}
\end{aligned}
$$

We conclude from the last equation that $d p / d z$ is constant,

$$
\frac{d p}{d z}=-\frac{p_{1}-p_{a}}{L}=-\frac{M g}{\pi R^{2} L}
$$

where the shear force on the piston acting vertically upwards has been neglected. The leakage volume flow rate is finally given as

$$
Q=\frac{M g h^{3}}{6 \mu R^{2} L}\left(R-\frac{h}{2}\right) \simeq \frac{M g h^{3}}{6 \mu R L}
$$

Problem 6.3

Refer to Figure 2 for the schematic. The flow is steady.

Figure 2: Schematic of Problem 6.3
(a) We assume that the flow is steady and fully developed in the channel between the upper and lowe plates away from the center, i.e. for $r>d / 2$. The momentum equation in the r-direction is

$$
\rho\left(u \frac{\partial u}{\partial r}+w \frac{\partial u}{\partial z}\right)=-\frac{\partial p}{\partial r}+\mu\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}-\frac{u}{r^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right)
$$

The ratio of the dominant inertia term to the dominant diffusion term is

$$
\frac{\rho u \frac{\partial u}{\partial r}}{\mu \frac{\partial^{2} u}{\partial z^{2}}} \simeq \frac{\rho \frac{\bar{u}^{2}}{r}}{\mu \frac{\bar{u}}{h^{2}}}=\frac{\rho \bar{u} h}{\mu} \frac{h}{r}=\operatorname{Re}_{h} \frac{h}{r}
$$

(b) Noting that $Q=2 \pi r h \bar{u}$, the flow may be assumed to be inertia free if

$$
\begin{aligned}
& \frac{\rho \bar{u} h}{\mu} \frac{h}{r} \ll 1 \\
\Rightarrow & \frac{Q}{2 \pi r h} \frac{\rho h}{\mu} \frac{h}{r} \ll 1 \\
\Rightarrow & r^{2} \gg \frac{\rho Q h}{2 \pi \mu} \\
\Rightarrow & \sqrt{\frac{\rho Q h}{2 \pi \mu}} \ll r \leq R
\end{aligned}
$$

(c) The inertia free flow is governed by

$$
\frac{\partial^{2} u}{\partial z^{2}}=\frac{1}{\mu} \frac{d p}{d r}
$$

subject to the boundary conditions

$$
\begin{aligned}
u & =0 \text { at } z
\end{aligned}=0
$$

The velocity is then given by

$$
u=\frac{1}{2 \mu} \frac{d p}{d r}\left(z^{2}-z h\right)
$$

The volume flow rate is

$$
\begin{aligned}
Q & =\frac{2 \pi r}{2 \mu} \frac{d p}{d r} \int_{0}^{h}\left(z^{2}-z h\right) d z \\
& =-\frac{\pi r h^{3}}{6 \mu} \frac{d p}{d r}
\end{aligned}
$$

The pressure distribution is therefore governed by

$$
\begin{aligned}
& \frac{d p}{d r}=-\frac{6 \mu Q}{\pi h^{3}} \frac{1}{r} \\
\Rightarrow \quad & p(r)-p_{o}=-\frac{6 \mu Q}{\pi h^{3}} \ln \left(\frac{2 r}{d}\right)
\end{aligned}
$$

At $r=D / 2$, the gage pressure is zero so that

$$
Q=\frac{\pi p_{o} h^{3}}{6 \mu \ln (D / d)}
$$

The force is balance by the pressure distribution

$$
\begin{aligned}
F & =\int_{d / 2}^{D / 2} p(r) 2 \pi r d r \\
& =2 \pi \int_{d / 2}^{D / 2} p_{o}\left[1-\frac{\ln (2 r / d)}{\ln (D / d)}\right] r d r \\
& =\frac{\pi D^{2} p_{o}}{4}\left[\frac{1-(d / D)^{2}}{2 \ln (D / d)}\right]
\end{aligned}
$$

Problem 6.7

Refer to Figure 3 for the schematic. The flow is steady.

Figure 3: Schematic of Problem 6.7
(a) We apply the integral form of the conservation of mass for a control volume of height h ahd width $d x$,

$$
\begin{gather*}
Q+\frac{d Q}{d x} d x+q w d x-Q=0 \\
\Rightarrow \quad \frac{d Q}{d x}=-w q=-k w\left[p(x)-p_{a}\right] \tag{1}
\end{gather*}
$$

(b) The x-component of the momentum equation is

$$
0=-\frac{d p}{d x}+\mu \frac{\partial^{2} u}{\partial y^{2}}
$$

subject to the conditions $u=0$ at $y=0$ and $y=h$. The solution is

$$
u=\frac{1}{2 \mu} \frac{d p}{d x}\left(y^{2}-h y\right)
$$

leading to

$$
Q=w \int_{0}^{h} u d y=-\frac{w h^{3}}{12 \mu} \frac{d p}{d x}
$$

Differentiating in x,

$$
\begin{align*}
\frac{d Q}{d x} & =-\frac{w h^{3}}{12 \mu} \frac{d^{2} p}{d x^{2}} \tag{2}\\
\Rightarrow \quad \frac{d^{2} p}{d x^{2}} & =\frac{12 \mu k}{h^{2}}\left[p(x)-p_{a}\right] \tag{3}
\end{align*}
$$

subject to the conditions

$$
\begin{aligned}
& p=p_{1} \text { at } x=0 \\
& p=p_{a} \text { at } x=L
\end{aligned}
$$

(c) In this case we have a conventional Poiseuille flow. If q is very small, then k is very small. From equation (3)

$$
\begin{aligned}
& \frac{d^{2} p}{d x^{2}} \simeq 0 \\
\Rightarrow & \frac{d p}{d x}=\frac{p_{a}-p_{1}}{L}
\end{aligned}
$$

Therefore the location at which the gage pressure reaches half the inlet gage pressure is $x^{*}=L / 2$.
(d) In this case $Q(x=L) \simeq 0$. A first order approximation in this xase is to assume that Q varies linearly from $Q=Q_{0}$ at $x=0$ to $Q=0$ at $x=L$,

$$
\begin{aligned}
& \frac{d Q}{d x} \simeq-\frac{Q_{0}}{L} \\
\Rightarrow & Q \simeq Q_{0}\left(1-\frac{x}{L}\right)
\end{aligned}
$$

From equation (2),

$$
\frac{w h^{3}}{12 \mu} \frac{d^{2} p}{d x^{2}}=\frac{Q_{0}}{L}
$$

Leading to the pressure distribution

$$
\begin{equation*}
p(x)=\frac{6 \mu Q_{0}}{w h^{3} L} x^{2}+\left(\frac{p_{a}-p_{1}}{L}-\frac{6 \mu Q_{0}}{w h^{3}}\right) x+p_{1} \tag{4}
\end{equation*}
$$

To get Q_{0}, we integrate equation (1),

$$
\begin{aligned}
& 0-Q_{0}=\int_{0}^{L}-k w\left[p(x)-p_{a}\right] d x \\
\Rightarrow & Q_{0}=k w \int_{0}^{L}\left[\frac{6 \mu Q_{0}}{w h^{3} L} x^{2}+\left(\frac{p_{a}-p_{1}}{L}-\frac{6 \mu Q_{0}}{w h^{3}}\right) x+p_{1}-p_{a}\right] d x \\
\Rightarrow & Q_{0}=\frac{w h^{3}\left(p_{1}-p_{a}\right)}{2 \mu L+2 h^{3} / k L} \simeq \frac{w h^{3}\left(p_{1}-p_{a}\right)}{2 \mu L}
\end{aligned}
$$

Note $k L \gg h^{3} / \mu L$ in this case. Substituting Q_{0} in equation (4), we get

$$
\frac{p(x)-p_{a}}{p_{1}-p_{a}}=3 \frac{x^{2}}{L^{2}}-4 \frac{x}{L}+1
$$

Now we find x^{*} such that $\left(p\left(x^{*}\right)-p_{a}\right) /\left(p_{1}-p_{a}\right)=\frac{1}{2}$, resulting in $x^{*}=0.14 L$.
(e) The differential equation

$$
\frac{d^{2} p^{*}}{d x^{2}}=\alpha p^{*}(x)
$$

where $p^{*}(x)=\frac{p(x)-p_{a}}{p_{1}-p_{a}}$ and $\alpha=\frac{12 \mu k}{h^{2}}$ have the general solution

$$
p^{*}(x)=C_{1} e^{x \sqrt{\alpha}}+C_{2} e^{-x \sqrt{\alpha}}
$$

subject to the boundary conditions $p^{*}=1$ at $x=0$ and $p^{*}=0$ at $x=L$, we get

$$
\begin{aligned}
& C_{1}+C_{2}=1 \\
& C_{1} e^{L \sqrt{\alpha}}+C_{2} e^{-L \sqrt{\alpha}}=0
\end{aligned}
$$

leading to

$$
\frac{p(x)-p_{a}}{p_{1}-p_{a}}=\frac{e^{(L-x) \sqrt{\alpha}}-e^{-(L-x) \sqrt{\alpha}}}{e^{L \sqrt{\alpha}}-e^{-L \sqrt{\alpha}}}
$$

- case 1: in the limit $k \rightarrow 0$, i.e. $\alpha=0$,

$$
\frac{p(x)-p_{a}}{p_{1}-p_{a}}=\frac{L-x}{L}
$$

at $x=L / 2$, we get $\frac{p(x)-p_{a}}{p_{1}-p_{a}}=1 / 2$.

- case 2: in the limit $L \sqrt{\alpha} \gg 0$,

$$
\frac{p(x)-p_{a}}{p_{1}-p_{a}}=e^{-x \sqrt{\alpha}}
$$

at $x=\frac{\ln (2)}{\sqrt{\alpha}}$, we get $\frac{p(x)-p_{a}}{p_{1}-p_{a}}=1 / 2$.

Problem 6.10

Refer to Figure 4 for the schematic.

Figure 4: Schematic of Problem 6.10
(a) the ratio of the inertia to viscous forces is

$$
\frac{\rho u \frac{\partial u}{\partial x}}{\mu \frac{\partial^{2} u}{\partial y^{2}}} \sim \frac{\rho \frac{U^{2}}{x}}{\mu \frac{U}{\alpha^{2} x^{2}}}=\frac{\rho U x}{\mu} \alpha^{2}=\operatorname{Re}_{x} \alpha^{2}
$$

Therefore the criteria for modeling the flow as inertia free is to have $\operatorname{Re}_{x} \alpha^{2} \ll 1$.
(b) Locally Couette flow. The governing equation is

$$
0=-\frac{d p}{d x}+\mu \frac{\partial^{2} u}{\partial y^{2}}
$$

subject to the boundary conditions

$$
\begin{array}{r}
u=0 \text { at } y=0 \\
u=U \text { at } y=h
\end{array}
$$

The velocity is then given by

$$
u=-\frac{1}{2 \mu} \frac{d p}{d x}\left(y^{2}-y h\right)+U \frac{y}{h}
$$

The volume flow rate is given by

$$
\begin{aligned}
Q & =\int_{0}^{h} u d y=\frac{h^{3}}{12 \mu} \frac{d p}{d x}+\frac{U h}{2} \\
& =\frac{\alpha^{3} x^{3}}{12 \mu} \frac{d p}{d x}+\frac{U \alpha x}{2}
\end{aligned}
$$

By applying the integral form of the conservation of mass for the control volume shown in Figure 4, we get ${ }^{1}$

$$
Q=0
$$

Then

$$
\begin{aligned}
& \frac{d p}{d x}==-\frac{6 \mu U}{\alpha^{2}} \frac{1}{x^{2}} \\
\Rightarrow \quad & p-p_{L}=\frac{6 \mu U}{\alpha^{2}} \frac{L-x}{x L}
\end{aligned}
$$

[^0]
Problem 6.16

Refer to Figure 5 for the schematic.

Figure 5: Schematic of Problem 6.16
(a) We apply conservation of mass for a control volume shown in the figure,

$$
\begin{align*}
& \frac{\partial}{\partial t} \int_{C V} \rho d \mathcal{V}+\int_{C S} \rho \mathbf{u} \cdot \hat{\mathbf{n}} d \mathcal{S}=0 \\
\Rightarrow & \frac{\partial}{\partial t}(\rho h d x)+\rho \frac{d Q}{d x} d x=0 \\
\Rightarrow & \frac{\partial h}{\partial t}+\frac{d Q}{d x}=0 \tag{5}
\end{align*}
$$

where Q is the volume flowrate. The differential form of the momentum conservation in the x-direction is

$$
0=\mu \frac{\partial u^{2}}{\partial y^{2}}+\rho g \sin \theta
$$

where the pressure gradient is zero and the inertia term is neglected. The boundary conditions are

$$
\begin{aligned}
& u=0 \text { at } y \\
&=0 \\
& \tau=\mu \frac{\partial u}{\partial y}=0 \text { at } y
\end{aligned}
$$

The velocity is then given by

$$
u=\frac{\rho g \sin \theta}{\mu}\left(h y-\frac{y^{2}}{2}\right)
$$

The volume flow rate is

$$
\begin{aligned}
& Q=\int_{0}^{h} u d y=\frac{\rho g \sin \theta}{3 \mu} h^{3} \\
\Rightarrow & \frac{d Q}{d x}=\frac{\rho g \sin \theta}{\mu} h^{2} \frac{d h}{d x}
\end{aligned}
$$

Combining with equation (5), we get

$$
\frac{\partial h}{\partial t}+\frac{\rho g \sin \theta}{\mu} h^{2} \frac{d h}{d x}=0
$$

(b)

[^0]: ${ }^{1}$ It may be easier to get the result in a reference frame moving with the blade.

