Problem Set 2 Solution: Inviscid Flow

"Advanced Fluid Mechanics Problems" by Shapiro and Sonin
Problems 4.4, 4.7, 4.8, 4.9, 4.10, 4.13, 4.18, 4.19, 4.21, 4.23, 4.24, 4.28.

Problem 4.4

Refer to Figure 1 for the schematic. The flow is 1D, inviscid and incompressible. Gravi-

Figure 1: Schematic of Problem 4.4
tational effects are negligible.
(a) Applying Bernoulli's equation along a streamline from location x to location 2,

$$
\begin{aligned}
\frac{p_{2}}{\rho}+\frac{u_{2}^{2}}{2} & =\frac{p(x)}{\rho}+\frac{u^{2}(x)}{2} \\
\Rightarrow p(x)-p(a) & =\frac{\rho}{2}\left(u_{2}^{2}-u^{2}(x)\right) \\
\Rightarrow p(x)-p(a) & =\frac{\rho Q^{2}}{2}\left(\frac{1}{A_{2}^{2}}-\frac{1}{A^{2}(x)}\right)
\end{aligned}
$$

(b) We consider a differential volume between x and $x+d x$. The cross sectional areas are respectively $A(x)$ and $A(x)+(d A / d x) d x$. The nozzle wall area onto which the pressure acts is $d S$ so that the corresponding force x-component is $d F_{x}=p(x) d S \hat{\mathbf{n}} \cdot \hat{\mathbf{x}}=p(x) d A$, where $\hat{\mathbf{n}}$ is the unit vector normal to $d S$ and pointing into the wall. The total force component in the x direction is

$$
\begin{aligned}
F_{x} & =\int_{1}^{2} d F_{x}=\int_{A_{1}}^{A_{2}} p d A=\int_{A_{1}}^{A_{2}} \frac{\rho Q^{2}}{2}\left(\frac{1}{A_{2}^{2}}-\frac{1}{A^{2}(x)}\right) d A \\
\Rightarrow F_{x} & =\rho Q^{2} \frac{\left(A_{1}-A_{2}\right)^{2}}{2 A_{1} A_{2}^{2}}
\end{aligned}
$$

(c) The product $p d A$ has always the same sign.

- If $A \nearrow, d A>0 \Rightarrow u \searrow \Rightarrow p \nearrow$
- If $A \searrow, d A<0 \Rightarrow u \nearrow \Rightarrow p \searrow$

Problem 4.7

Refer to Figure 2 for the schematic.

Figure 2: Schematic of Problem 4.7
The fuel-air mass flow rate ratio is

$$
\begin{aligned}
\alpha= & \frac{\dot{m}_{f}}{\dot{m}_{a}}=\frac{\rho_{f} u_{f}\left(\pi d^{2} / 4\right)}{\rho_{a} u_{a}\left(\pi D^{2} / 4\right)} \\
& \Rightarrow \frac{d}{D}=\left(\alpha \frac{\rho_{a}}{\rho_{f}} \frac{u_{a}}{u_{f}}\right)^{1 / 2}
\end{aligned}
$$

In order to determine the ration u_{a} / u_{f}, we apply Bernoulli's equation along two stream lines, one for air from the ambient to location 1 in the vicinity of the fuel jet and one for fuel from the reservoir to location 1 .

$$
\begin{aligned}
\text { for air } & \frac{p_{a}}{\rho_{a}}=\frac{p_{1}}{\rho_{a}}+\frac{u_{a}^{2}}{2} \\
\text { for fuel } & \frac{p_{a}}{\rho_{f}}=\frac{p_{1}}{\rho_{f}}+\frac{u_{f}^{2}}{2}
\end{aligned}
$$

so that

$$
\frac{u_{a}}{u_{f}}=\left(\frac{\rho_{f}}{\rho_{a}}\right)^{1 / 2}
$$

Then

$$
\frac{d}{D}=\alpha^{1 / 2}\left(\frac{\rho_{a}}{\rho_{f}}\right)^{1 / 4}
$$

Problem 4.8

Refer to Figure 3 for the schematic. The flow is inviscid and incompressible.

Figure 3: Schematic of Problem 4.8
(a) We apply Bernoulli's equation along a stream line starting from location 1 the top of the bellows and ending at location 2 at the nozzle exit.

$$
\begin{align*}
\frac{p_{1}}{\rho}+\frac{u_{1}^{2}}{2} & =\frac{p_{a}}{\rho}+\frac{u_{2}^{2}}{\rho} \\
\Rightarrow p_{1}-p_{a} & =\frac{\rho}{2}\left(u_{2}^{2}-u_{1}^{2}\right) \\
\Rightarrow \frac{F}{A_{1}} & =\frac{\rho}{2}\left(u_{2}^{2}-u_{1}^{2}\right) \tag{1}
\end{align*}
$$

Next we apply the conservation of mass in integral form for a control volume that is moving with the piston

$$
\begin{array}{r}
\frac{d}{d t}(\rho \mathcal{V})+\rho u_{2} \frac{\pi D_{2}^{2}}{4}=0 \\
\Rightarrow u_{2}=-\frac{4}{\pi D_{2}^{2}} \frac{d \mathcal{V}}{d t}
\end{array}
$$

By also applying conservation of mass in integral form for fixed control volume we find the relation

$$
u_{1} D_{1}^{2}=u_{2} D_{2}^{2} \Rightarrow u_{1}=-\left(\frac{D_{2}}{D_{1}}\right)^{2} \frac{4}{\pi D_{2}^{2}} \frac{d \mathcal{V}}{d t}
$$

Substituting expression for u_{1} and u_{2} into equation (1)

$$
\frac{d \mathcal{V}}{d t}=-\frac{\pi D_{2}^{2}}{4}\left(\frac{2 F}{\rho A_{1}} \frac{1}{1-\left(\frac{D_{2}}{D_{1}}\right)^{4}}\right)^{1 / 2}
$$

Integrating from $t=0$ to $t=\tau$ at which $\mathcal{V}=0$,

$$
\begin{aligned}
\tau & =\mathcal{V} \frac{D_{1}}{D_{2}^{2}}\left(\frac{2 \rho}{\pi F}\right)^{1 / 2}\left(1-\left(\frac{D_{2}}{D_{1}}\right)^{4}\right)^{1 / 2} \\
& \simeq \mathcal{V} \frac{D_{1}}{D_{2}^{2}}\left(\frac{2 \rho}{\pi F}\right)^{1 / 2}
\end{aligned}
$$

(b) For STP air with $\mathcal{V}=\infty$ liter, $D_{1}=10 \mathrm{~cm}, D_{2}=1 \mathrm{~cm}$, and $F=2$ kgf: $\tau=0.2 \mathrm{~s}$.

Problem 4.9

Refer to Figure 4 for the schematic. The flow is inviscid and steady.

Figure 4: Schematic of Problem 4.9
(a) We apply Bernoulli's equation along the stream line $2-3$:

$$
\begin{array}{r}
\int_{2}^{3} d p+\int_{2}^{3} \rho g z d s+\int_{2}^{3} \frac{1}{2} \rho u^{2} d s=0 \\
\Rightarrow\left(p_{3}-p_{2}\right)+\rho_{H} g h+\frac{1}{2} u_{3}^{2} \simeq 0 \\
\Rightarrow g h\left(\rho_{a}-\rho_{H}\right) \simeq \frac{1}{2} \rho_{H} u_{3}^{2} \\
\Rightarrow u_{3} \simeq\left[2 g h\left(\frac{\rho_{a}}{\rho_{H}}-1\right)\right]^{1 / 2} \\
\Rightarrow u_{3} \simeq\left[2 g h \frac{\Delta T}{T_{a}}\right]^{1 / 2}
\end{array}
$$

where $p_{3}-p_{2}=-\rho_{a} g h, \rho_{2}=\rho_{3}=\rho_{H}, u_{2}^{2} \ll u_{3}^{2}$, and $p_{a}=\rho_{a} R T_{a}=\rho_{H} R\left(T_{a}+\Delta T\right)$.
(b) In the case the cap is closed,

$$
\begin{array}{r}
\int_{2}^{3} d p+\int_{2}^{3} \rho g z d s+\int_{2}^{3} \frac{1}{2} \rho u^{2} d s=0 \\
\Rightarrow\left(p_{3}-p_{2}\right)+\rho_{H} g h \simeq 0 \\
\Rightarrow p_{3} \simeq p_{a}-\rho_{H} g h \\
\Rightarrow p_{3}-p_{3 a} \simeq g h\left(\rho_{a}-\rho_{H}\right) \\
\Rightarrow(\Delta p)_{c a p} \simeq \rho_{a} g h \frac{\Delta T}{T_{a}+\Delta T}
\end{array}
$$

where $p_{2}=p_{a}, p_{3 a}=p_{a}-\rho_{a} g h, \rho_{2}=\rho_{3}=\rho_{H}, u_{2} \simeq 0, u_{3}=0$ and $p_{a}=\rho_{a} R T_{a}=$ $\rho_{H} R\left(T_{a}+\Delta T\right)$.

Problem 4.10

Refer to Figure 5 for the schematic. The flow is inviscid and quasi-steady.

Figure 5: Schematic of Problem 4.10

We apply Euler's equation along a streamline from 1 inside the vessel to 2 at the exit

$$
\int_{1}^{2} \frac{d p}{\rho}+g\left(z_{2}-z_{1}\right)+\frac{1}{2}\left(u_{2}^{2}-u_{1}^{2}\right)+\int_{1}^{2} \frac{\partial u}{\partial t} d s=0
$$

We neglect gravitational effects. The flow is quasi-steady so that $\int_{1}^{2} \frac{\partial u}{\partial t} d s \simeq 0$. At location $1, u_{1}=0$. Then

$$
\begin{equation*}
-2 \int_{1}^{2} \frac{d p}{\rho}=u_{2}^{2} \tag{2}
\end{equation*}
$$

Now we find an expression for u_{2} by employing the integral form of the conservation of mass for a fixed control volume

$$
\begin{equation*}
\frac{d}{d t}(\rho \mathcal{V})+\rho u_{2} A=0 \Rightarrow \mathcal{V} \frac{d \rho}{d t}+\rho u_{2} A=0 \Rightarrow u_{2}=-\frac{\mathcal{V}}{A d t} \frac{d \rho}{\rho} \tag{3}
\end{equation*}
$$

Substituting expression for u_{2} (equation (3)) into equation (2)

$$
\begin{equation*}
\left(-2 \int_{1}^{2} \frac{d p}{\rho}\right)^{1 / 2}=-\frac{\mathcal{V}}{A d t} \frac{d \rho}{\rho} \tag{4}
\end{equation*}
$$

(a) We employ $p=\rho R T_{a}$ and noting that $d \rho / \rho=d p / p$ then

$$
\begin{aligned}
& \left(-2 R T_{a} \int_{1}^{2} \frac{d p}{p}\right)^{1 / 2}=-\frac{\mathcal{V}}{A d t} \frac{d p}{p} \Rightarrow\left(2 R T_{a} \ln \frac{p_{1}}{p_{2}}\right)^{1 / 2}=-\frac{\mathcal{V}}{A d t} \frac{d p}{p} \\
\Rightarrow & \left(2 R T_{a} \ln \frac{p}{p_{a}}\right)^{1 / 2}=-\frac{\mathcal{V}}{A d t} \frac{d p}{p} \Rightarrow \frac{A}{\mathcal{V}}\left(2 R T_{a}\right)^{1 / 2} d t=-\frac{1}{p\left(\ln \frac{p}{p_{a}}\right)^{1 / 2}} d p
\end{aligned}
$$

where $p_{2}=p_{a}, p_{1}=p(t), p^{\prime}(t)=p(t)-p_{a}$. Integration from $t=0$ to t and p from p_{i} to p, we get

$$
\frac{A}{\mathcal{V}}\left(2 R T_{a}\right)^{1 / 2} t=2\left[\sqrt{\ln \frac{p_{i}}{p_{a}}}-\sqrt{\ln \frac{p}{p_{a}}}\right]
$$

(b) We start with equation (4)

$$
\left(-2 \int_{1}^{2} \frac{d p}{\rho}\right)^{1 / 2}=-\frac{\mathcal{V}}{A d t} \frac{d \rho}{\rho}
$$

Noting that $p / p_{i}=\left(\rho / \rho_{i}\right)^{\gamma} \Rightarrow d \rho / \rho=(1 / \gamma) d p / p$ then

$$
\begin{array}{r}
\left(\frac{2 \gamma}{\gamma-1} \frac{p_{i}}{\rho_{i}}\right)^{1 / 2}\left[\left(\frac{p}{p_{i}}\right)^{\frac{\gamma-1}{\gamma}}-\left(\frac{p_{a}}{p_{i}}\right)^{\frac{\gamma-1}{\gamma}}\right]^{1 / 2}=-\frac{\mathcal{V}}{\gamma A d t} \frac{d p}{p} \\
\Rightarrow-\frac{\gamma A}{\mathcal{V}}\left(\frac{2 \gamma}{\gamma-1} \frac{p_{i}}{\rho_{i}}\right)^{1 / 2} d t=p^{-1}\left[\left(\frac{p}{p_{i}}\right)^{\frac{\gamma-1}{\gamma}}-\left(\frac{p_{a}}{p_{i}}\right)^{\frac{\gamma-1}{\gamma}}\right]^{-1 / 2} d p
\end{array}
$$

Performing Taylor series expansion in p^{\prime} / p_{a} around zero and integrating from $t=0$ to t yields

$$
\begin{gathered}
-\frac{\gamma A}{\mathcal{V}}\left(\frac{2 \gamma}{\gamma-1} \frac{p_{i}}{\rho_{i}}\right)^{1 / 2} t=\frac{2}{\left(\alpha p_{a}\right)^{1 / 2}}\left(p^{\prime 1 / 2}-p_{i}^{\prime 1 / 2}\right) \\
\Rightarrow p^{\prime}=\left[p_{i}^{\prime 1 / 2}-\left(\frac{p_{a}}{2}\right)^{1 / 2} \frac{\gamma A}{\mathcal{V}}\left(\frac{p_{i}}{\rho_{i}}\right)^{1 / 2} t\right]^{2}
\end{gathered}
$$

where $\alpha=(\gamma-1) / \gamma$.

Problem 4.13

Refer to Figure 6 for the schematic. The flow is two-dimensional, inviscid and steady.

Figure 6: Schematic of Problem 4.13
(a) We consider a stream line along the free surface, Euler's equation in differential form is

$$
\frac{1}{\rho} \frac{d p}{d s}+\frac{d}{d s}\left(g z_{s}\right)+\frac{1}{2} \frac{d\left(u^{2}\right)}{d s}=0
$$

where the subscript s denotes the free-surface. Since $p \simeq p_{a}$ on the surface, then

$$
g \frac{d z_{s}}{d s}+\frac{1}{2} \frac{d\left(u^{2}\right)}{d s}=0
$$

One the surface $d s=d x / \cos \alpha_{s}$ so that

$$
g \frac{d z_{s}}{d x}+\frac{1}{2} \frac{d\left(u^{2}\right)}{d x}=0
$$

Conservation of mass

$$
\begin{aligned}
& Q=u h \\
\Rightarrow \quad & \frac{1}{2} \frac{d\left(u^{2}\right)}{d x}=\frac{1}{2} \frac{d}{d x}\left(\frac{Q^{2}}{h^{2}}\right)=-\frac{Q^{2}}{h^{3}} \frac{d h}{d x}=-\frac{u^{2}}{h} \frac{d h}{d x}
\end{aligned}
$$

Noting that $h \simeq z_{s}-z_{w}$ then

$$
\begin{aligned}
& g \frac{d z_{s}}{d x} \simeq \frac{u^{2}}{h}\left(\frac{d z_{s}}{d x}-\frac{d z_{w}}{d x}\right) \\
\Rightarrow & \frac{d z_{s}}{d x} \simeq \frac{\frac{u^{2}}{g h}}{\frac{u^{2}}{g h}-1} \tan \alpha
\end{aligned}
$$

where $\tan \alpha=d z_{w} / d x$.

A Vorticity form of Euler's equation

Euler's equation in differential form is

$$
\frac{\partial \mathbf{u}}{\partial t}+(\mathbf{u} \cdot \nabla) \mathbf{u}=-\frac{1}{\rho} \nabla p+\mathbf{g}
$$

We invoke the identity

$$
\mathbf{u} \times(\nabla \times \mathbf{u})=\frac{1}{2} \nabla(\mathbf{u} \cdot \mathbf{u})-(\mathbf{u} \cdot \nabla) \mathbf{u}
$$

Noting that $\boldsymbol{\omega}=\nabla \times \mathbf{u}$ then

$$
\frac{\partial \mathbf{u}}{\partial t}-\mathbf{u} \times \boldsymbol{\omega}=-\frac{1}{\rho} \nabla p-\nabla(g z)-\frac{1}{2} \nabla|\mathbf{u}|^{2}
$$

Next we take the curl of the above equation

$$
\frac{\partial \boldsymbol{\omega}}{\partial t}-\nabla \times \mathbf{u} \times \boldsymbol{\omega}=-\nabla \times\left(\frac{1}{\rho} \nabla p\right)
$$

We invoke another identity

$$
\nabla \times \mathbf{u} \times \boldsymbol{\omega}=\mathbf{u}(\nabla \cdot \boldsymbol{\omega})+(\boldsymbol{\omega} \cdot \nabla) \mathbf{u}-\boldsymbol{\omega}(\nabla \cdot \mathbf{u})-(\mathbf{u} \cdot \nabla) \boldsymbol{\omega}
$$

Noting that $\nabla \cdot \boldsymbol{\omega}=0$ and $\nabla \cdot \mathbf{u}=-\frac{1}{\rho} \frac{D \rho}{D t}$ from the continuity, then

$$
\begin{gathered}
\frac{\partial \boldsymbol{\omega}}{\partial t}+(\mathbf{u} \cdot \nabla) \boldsymbol{\omega}=(\boldsymbol{\omega} \cdot \nabla) \mathbf{u}+\frac{\boldsymbol{\omega}}{\rho} \frac{D \rho}{D t}-\nabla \times\left(\frac{1}{\rho} \nabla p\right) \\
\frac{D \boldsymbol{\omega}}{D t}-\frac{\boldsymbol{\omega}}{\rho} \frac{D \rho}{D t}=(\boldsymbol{\omega} \cdot \nabla) \mathbf{u}-\nabla \times\left(\frac{1}{\rho} \nabla p\right)
\end{gathered}
$$

We invoke the identity

$$
\nabla \times(a \mathbf{A})=a(\nabla \times \mathbf{A})+(\nabla a) \times \mathbf{A}
$$

so that

$$
\nabla \times\left(\frac{1}{\rho} \nabla p\right)=\frac{1}{\rho}(\nabla \times \nabla p)+\nabla\left(\frac{1}{\rho}\right) \times \nabla p=-\frac{1}{\rho^{2}} \nabla \rho \times \nabla p
$$

So that

$$
\frac{D \boldsymbol{\omega}}{D t}-\frac{\boldsymbol{\omega}}{\rho} \frac{D \rho}{D t}=(\boldsymbol{\omega} \cdot \nabla) \mathbf{u}+\frac{1}{\rho^{2}} \nabla \rho \times \nabla p
$$

Noting that

$$
\frac{D \boldsymbol{\omega}}{D t}-\frac{\boldsymbol{\omega}}{\rho} \frac{D \rho}{D t}=\rho \frac{D}{D t}\left(\frac{\boldsymbol{\omega}}{\rho}\right)
$$

Then

$$
\begin{equation*}
\rho \frac{D}{D t}\left(\frac{\boldsymbol{\omega}}{\rho}\right)=(\boldsymbol{\omega} \cdot \nabla) \mathbf{u}+\frac{1}{\rho^{2}} \nabla \rho \times \nabla p+\nabla \times \mathbf{F}_{b} \tag{17}
\end{equation*}
$$

where body force \mathbf{F}_{b} was included in the equation.
Analysis of equation (17)

- If the body force is conservative $\left(\nabla \times \mathbf{F}_{b}=\mathbf{0}\right)$ and the flow is incompressible, then

$$
\begin{equation*}
\frac{D \boldsymbol{\omega}}{D t}=(\boldsymbol{\omega} \cdot \nabla) \mathbf{u} \tag{18}
\end{equation*}
$$

- If additionally the flow is steady

$$
\begin{equation*}
(\boldsymbol{\omega} \cdot \nabla) \mathbf{u}=\mathbf{0} \tag{19}
\end{equation*}
$$

- If the body force is conservative $\left(\nabla \times \mathbf{F}_{b}=\mathbf{0}\right)$ and the flow is barotropic $(\nabla \rho \times \nabla p=$ 0), then

$$
\begin{equation*}
\frac{D}{D t}\left(\frac{\boldsymbol{\omega}}{\rho}\right)=\left(\frac{\boldsymbol{\omega}}{\rho} \cdot \nabla\right) \mathbf{u} \tag{20}
\end{equation*}
$$

