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Problem Set 2 Solution: Inviscid Flow

“Advanced Fluid Mechanics Problems” by Shapiro and Sonin
Problems 4.4, 4.7, 4.8, 4.9, 4.10, 4.13, 4.18, 4.19, 4.21, 4.23, 4.24, 4.28.

Problem 4.4
Refer to Figure 1 for the schematic. The flow is 1D, inviscid and incompressible. Gravi-

A
1

A(x)

x
A
2

x x+dx

A(x) A(x) + dA

p

n

x

dS

Figure 1: Schematic of Problem 4.4

tational effects are negligible.

(a) Applying Bernoulli’s equation along a streamline from location x to location 2,
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(b) We consider a differential volume between x and x+dx. The cross sectional areas are
respectively A(x) and A(x) + (dA/dx)dx. The nozzle wall area onto which the pressure
acts is dS so that the corresponding force x−component is dFx = p(x)dS n̂ · x̂ = p(x) dA,
where n̂ is the unit vector normal to dS and pointing into the wall. The total force
component in the x direction is
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(c) The product p dA has always the same sign.

• If A ↗, dA > 0 ⇒ u ↘⇒ p ↗
• If A ↘, dA < 0 ⇒ u ↗⇒ p ↘
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Problem 4.7
Refer to Figure 2 for the schematic.
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Figure 2: Schematic of Problem 4.7

The fuel-air mass flow rate ratio is

α =
ṁf

ṁa

=
ρf uf (πd2/4)
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⇒ d

D
=

(
α

ρa

ρf

ua

uf
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In order to determine the ration ua/uf , we apply Bernoulli’s equation along two stream
lines, one for air from the ambient to location 1 in the vicinity of the fuel jet and one for
fuel from the reservoir to location 1.
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Problem 4.8
Refer to Figure 3 for the schematic. The flow is inviscid and incompressible.
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Figure 3: Schematic of Problem 4.8

(a) We apply Bernoulli’s equation along a stream line starting from location 1 the top of
the bellows and ending at location 2 at the nozzle exit.
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Next we apply the conservation of mass in integral form for a control volume that is
moving with the piston

d
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By also applying conservation of mass in integral form for fixed control volume we find
the relation
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Substituting expression for u1 and u2 into equation (1)

dV
dt

= −πD2
2
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Integrating from t = 0 to t = τ at which V = 0,
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(b) For STP air with V = ∞ liter, D1 = 10 cm, D2 = 1 cm, and F =2kgf: τ = 0.2 s.
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Problem 4.9
Refer to Figure 4 for the schematic. The flow is inviscid and steady.
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Figure 4: Schematic of Problem 4.9

(a) We apply Bernoulli’s equation along the stream line 2− 3:

∫ 3

2
dp +

∫ 3

2
ρ g z ds +

∫ 3

2

1

2
ρ u2 ds = 0

⇒ (p3 − p2) + ρH g h +
1

2
u2
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⇒ g h (ρa − ρH) ' 1

2
ρH u2

3
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[
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)]1/2
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[
2 g h

∆T
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where p3 − p2 = −ρa g h, ρ2 = ρ3 = ρH , u2
2 << u2

3, and pa = ρaRTa = ρHR (Ta + ∆T ).

(b) In the case the cap is closed,

∫ 3

2
dp +

∫ 3

2
ρ g z ds +

∫ 3

2

1

2
ρ u2 ds = 0

⇒ (p3 − p2) + ρH g h ' 0

⇒ p3 ' pa − ρHg h

⇒ p3 − p3a ' g h (ρa − ρH)

⇒ (∆p)cap ' ρa g h
∆T

Ta + ∆T

where p2 = pa, p3a = pa − ρa g h, ρ2 = ρ3 = ρH , u2 ' 0, u3 = 0 and pa = ρaRTa =
ρHR (Ta + ∆T ).
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Problem 4.10
Refer to Figure 5 for the schematic. The flow is inviscid and quasi-steady.
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Figure 5: Schematic of Problem 4.10

We apply Euler’s equation along a streamline from 1 inside the vessel to 2 at the exit
∫ 2

1

dp

ρ
+ g(z2 − z1) +

1
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2 − u2
1

)
+
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1
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We neglect gravitational effects. The flow is quasi-steady so that
∫ 2
1

∂u
∂t

ds ' 0. At location
1, u1 = 0. Then

−2
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dp

ρ
= u2

2 (2)

Now we find an expression for u2 by employing the integral form of the conservation of
mass for a fixed control volume

d
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+ ρu2A = 0 ⇒ u2 = − V
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dρ

ρ
(3)

Substituting expression for u2 (equation (3)) into equation (2)
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ρ
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(a) We employ p = ρR Ta and noting that dρ/ρ = dp/p then
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where p2 = pa, p1 = p(t), p′(t) = p(t) − pa. Integration from t = 0 to t and p from pi to
p, we get
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(b) We start with equation (4 )
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Performing Taylor series expansion in p′/pa around zero and integrating from t = 0 to t
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where α = (γ − 1)/γ.
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Problem 4.13
Refer to Figure 6 for the schematic. The flow is two-dimensional, inviscid and steady.
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Figure 6: Schematic of Problem 4.13

(a) We consider a stream line along the free surface, Euler’s equation in differential form
is

1

ρ

dp

ds
+

d

ds
(gzs) +

1

2

d(u2)

ds
= 0

where the subscript s denotes the free-surface. Since p ' pa on the surface, then

g
dzs

ds
+

1

2

d(u2)

ds
= 0

One the surface ds = dx/ cos αs so that

g
dzs

dx
+

1

2

d(u2)

dx
= 0

Conservation of mass

Q = uh

⇒ 1

2

d(u2)

dx
=

1

2
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h2
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h3

dh
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Noting that h ' zs − zw then

g
dzs

dx
' u2

h

(
dzs

dx
− dzw

dx

)

⇒ dzs

dx
'

u2

gh

u2

gh
− 1

tan α

where tanα = dzw/dx.
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A Vorticity form of Euler’s equation

Euler’s equation in differential form is

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p + g

We invoke the identity

u× (∇× u) =
1

2
∇ (u · u)− (u · ∇)u

Noting that ω = ∇× u then

∂u

∂t
− u× ω = −1

ρ
∇p−∇(gz)− 1

2
∇|u|2

Next we take the curl of the above equation

∂ω

∂t
−∇× u× ω = −∇×

(
1

ρ
∇p

)

We invoke another identity

∇× u× ω = u(∇ · ω) + (ω · ∇)u− ω(∇ · u)− (u · ∇)ω

Noting that ∇ · ω = 0 and ∇ · u = −1
ρ

Dρ
Dt

from the continuity, then
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ρ
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ρ
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)
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)
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)
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ρ

)
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ρ
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Then

ρ
D

Dt

(
ω

ρ

)
= (ω · ∇)u +

1

ρ2
∇ρ×∇p +∇× Fb (17)

where body force Fb was included in the equation.

Analysis of equation (17)
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• If the body force is conservative (∇× Fb = 0) and the flow is incompressible, then

Dω

Dt
= (ω · ∇)u (18)

• If additionally the flow is steady

(ω · ∇)u = 0 (19)

• If the body force is conservative (∇×Fb = 0) and the flow is barotropic (∇ρ×∇p =
0), then

D

Dt

(
ω

ρ

)
=

(
ω

ρ
· ∇

)
u (20)
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