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American University of Beirut, Spring 2004 Handout # PS2 Solution

Problem Set 2 Solution: Inviscid Flow

“Advanced Fluid Mechanics Problems” by Shapiro and Sonin
Problems 4.4, 4.7, 4.8, 4.9, 4.10, 4.13, 4.18, 4.19, 4.21, 4.23, 4.24, 4.28.

Problem 4.4
Refer to Figure 1 for the schematic. The flow is 1D, inviscid and incompressible. Gravi-
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Figure 1: Schematic of Problem 4.4

tational effects are negligible.

(a) Applying Bernoulli’s equation along a streamline from location x to location 2,
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(b) We consider a differential volume between x and =+ dx. The cross sectional areas are
respectively A(z) and A(z) + (dA/dx)dz. The nozzle wall area onto which the pressure
acts is dS so that the corresponding force x—component is dF, = p(z)dSn-x = p(z) dA,
where n is the unit vector normal to dS and pointing into the wall. The total force
component in the x direction is
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(¢) The product pdA has always the same sign.
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Problem 4.7
Refer to Figure 2 for the schematic.
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Figure 2: Schematic of Problem 4.7

The fuel-air mass flow rate ratio is
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In order to determine the ration w,/uys, we apply Bernoulli’s equation along two stream

lines, one for air from the ambient to location 1 in the vicinity of the fuel jet and one for
fuel from the reservoir to location 1.
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Problem 4.8
Refer to Figure 3 for the schematic. The flow is inviscid and incompressible.
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Figure 3: Schematic of Problem 4.8

(a) We apply Bernoulli’s equation along a stream line starting from location 1 the top of
the bellows and ending at location 2 at the nozzle exit.
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Next we apply the conservation of mass in integral form for a control volume that is
moving with the piston
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By also applying conservation of mass in integral form for fixed control volume we find
the relation
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Substituting expression for u; and us into equation (1)
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Integrating from ¢ = 0 to ¢t = 7 at which V = 0,
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(b) For STP air with V = oo liter, D; = 10 cm, Dy = 1 ¢cm, and F =2kgf: 7 =0.2 s.



Problem 4.9

Refer to Figure 4 for the schematic. The flow is inviscid and steady.
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Figure 4: Schematic of Problem 4.9

(a) We apply Bernoulli’s equation along the stream line 2 — 3:
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where p3 —py = —pa g h, pa = p3 = pu, u3 << u3, and p, = paRT, = pg R (T, + AT).

(b) In the case the cap is closed,
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where py = pa, P3¢ = Pa — Pagh, p2 = p3 = pu, uz ~ 0, uz = 0 and p, = p,RT, =
pHR(Ta+AT)



Problem 4.10
Refer to Figure 5 for the schematic. The flow is inviscid and quasi-steady.
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Figure 5: Schematic of Problem 4.10

We apply Euler’s equation along a streamline from 1 inside the vessel to 2 at the exit
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We neglect gravitational effects. The flow is quasi-steady so that [} ‘?;; ds ~ 0. At location
1, u; = 0. Then
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Now we find an expression for uy by employing the integral form of the conservation of
mass for a fixed control volume
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Substituting expression for uy (equation (3)) into equation (2)
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(a) We employ p = p RT, and noting that dp/p = dp/p then
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where py = pa, p1 = p(t), p'(t) = p(t) — pa. Integration from ¢t = 0 to ¢ and p from p; to

p, we get
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(b) We start with equation (4 )
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Performing Taylor series expansion in p’/p, around zero and integrating from ¢ = 0 to ¢
yields

1/2
_M 27 pi / P 2 (p,1/2 _p{1/2)
V \v—1p (arpa)t/? ’

2
128 A [\ /2
;‘p':[pfﬂ‘(pz“) o)

where a = (v — 1) /7.



Problem 4.13

Refer to Figure 6 for the schematic. The flow is two-dimensional, inviscid and steady.
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Figure 6: Schematic of Problem 4.13

(a) We consider a stream line along the free surface, Euler’s equation in differential form
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where the subscript s denotes the free-surface. Since p ~ p, on the surface, then
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One the surface ds = dx/ cos a; so that

dz,  1d(u?)
gd:v 2 dr =0

Conservation of mass
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Noting that A ~ z4 — 2, then
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where tana = dz,,/dzx.
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A Vorticity form of Euler’s equation

Euler’s equation in differential form is
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Next we take the curl of the above equation
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We invoke another identity
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We invoke the identity
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Noting that

Then
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where body force F;, was included in the equation.
Analysis of equation (17)
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e If the body force is conservative (V x F, = 0) and the flow is incompressible, then

Dw
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o [f additionally the flow is steady

(w-V)u=0 (19)

e If the body force is conservative (V x F, = 0) and the flow is barotropic (Vpx Vp =

0), then
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