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Quiz 2

Problem 1 [34 points]
A gas-filled pneumatic strut in an automobile
suspension system can be modeled as a piston
in a cylinder with a gas of uniform density, i.e.
ρ = ρ(t) only, where t is time. As the piston
moves, the gas moves also, and we will assume
the velocity in the piston is one-dimensional, i.e.
u = u(x, t), v = w = 0. Given that the speed of the
piston V is constant and that L = L0, ρ = ρ0 at
t = 0. Find u(x, t) and ρ(t) in terms of ρ0, L0, V ,
and t.

Problem 2 [33 points]
Oil, of density ρ and viscosity µ, drains steadily
down the side of a vertical plate of infinite depth, so
that the flow is two-dimensional in the x − z plane
as shown. After a development region near the top
of the plate, the oil film will become fully developed
in the z−direction with a constant film thickness
δ. Assume that the surrounding air velocity is
negligible. In terms of given quantities, find the
velocity distribution (u, v, w) the volume flowrate of
oil draining down the plate?

Problem 3 [33 points]
Consider the steady inviscid incompressible flow
shown in figure. The flow passes first through a two-
dimensional channel of constant height h0. The flow
then passes under a plate of length L. The plate
is hinged to the upper wall of the channel while its
other end is suspended from a linear elastic string of
spring constant k. The spring is under no tension or
compression when the plate is horizontal.
(a) Explain why the configuration shown with the
plate titled down with angle α is a possible equilib-
rium state.
(b) Assuming the pressure inside the converging
channel is a function of x only, find p(x) in terms
of pa, ρ, V0, h0, h2, L and x.
(c) Find expressions for the reaction forces on the
hinge in terms of given quantities?
(d) [BONUS] Find h2 in terms of pa, ρ, V0, h0, L
and k, for α << 1.
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Problem 1 Solution
The mass of air inside the sealed cylinder is constant so that m = ρ0L0A = ρ(t)L(t)A. Noting that
V = dL/dt then L(t) = L0 + V t since V is constant. Then

ρ(t) = ρ0
L0

L0 + V t
(1)

Using the continuity equations and noting that ρ = ρ(t) and u = u(x, t), v = 0, w = 0, we get

∂ρ/∂t+ ρ∂u/∂x = 0⇒ ∂u/∂x = −1

ρ

dρ

dt
⇒ u = −1

ρ

dρ

dt
x+ C(t)

Noting that x = L(t), u = V , then

u =
1

ρ

dρ

dt
(L− x) + V = x

V

L0 + V t
(2)
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Since the flow is inviscid, steady, and incompressible, then we can use Bernoulli’s equation along a
streamline, which, in the absence of gravitational effects, states that p + ρV 2/2 = constant along a
streamline. Taking the streamline from station 0 to station x in the converging part of the channel, we
have

pa +
1

2
ρV 2

0 = p(x) +
1

2
ρV (x)2 (3)

For incompressible steady flow, conservation of mass leads

ρV0h0 = ρV (x)h(x) (4)

So as h(x) decreases, the flows increases it speed to conserve mass, and then from Bernoulli, the pressure
must go down. So the pressure in the flow in the converging part of the channel has a pressure less than
atmospheric resulting in a net downward force on the channel wall thus deflecting it downwards around
the hinge.
(b) Combining Eqs. (5) and (4), and noting that h(x) = h0 − x tanα, we get

p(x) = pa +
1

2
ρV 2

0

(
1− h20

h(x)2

)
= pa +

1

2
ρV 2

0

(
1− h20

(h0 − x tanα)2

)
(5)
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(c) We take the control volume CV1 and apply conservation of linear momentum in x and y directions,
then

x-dir pah0 − p2h2 − pa(h0 − h2) +Rx = ṁ(V2 − V0)

⇒ Rx = ṁV0

(
h0
h2
− 1

)
+ h2(p2 − pa)

⇒ Rx = ṁV0

(
h0
h2
− 1

)
+ h2

1

2
ρV 2

0

(
1− h20

h22

)
⇒ Rx = ṁV0

(
h0
h2
− 1

)
+

1

2
ṁV0

h2
h0

(
1− h20

h22

)
⇒ Rx = ṁV0

(
1

2

h0
h2

+
1

2

h2
h0
− 1

)
⇒ Rx =

1

2
ṁV0

(
αL

h0

)2

for α << 1 (6)

y-dir ⇒
∫ L cosα

0

(p(x)− pa)dx− k(h0 − h2) +Ry = 0

⇒ Ry = α

(
1

2

ρV 2
0 L

2

h0
− kL

)
for α << 1 (7)

where Rx and Ry are the reaction force components at the hinge, p2 and V2 are the pressure and speed
at the channel exit, i.e. at x = L cosα. Note also that sinα = (h0 − h2)/L or h2 = h0 − L sinα.
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