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Inviscid Flows

1 Euler’s Equation for Inviscid Flows

Consider a small particle of fixed identity (control mass) of density ρ, volume δV , and
velocity u. Applying Newton’s second law,

∑
F =

d

dt
(ρ δV u)

where the forces acting on the particle are

• body forces: weight ρ δV g, where g is gravity.

• surface forces: the normal surface force is due to pressure
∫
C.S.−pn̂ dS =

∫
C.V.−∇p dV =

−∇p δV . For an inviscid flow, the viscous tangential force acting on the particle
boundary surface is zero.

In the absence of other forces, and employing conservation of mass d(ρ δV)/dt = 0, and
dividing by particle volume δV , we arrive at Euler’s equation

ρ
du

dt
= −∇p+ ρg (1)

where the term ρdu
dt

, the mass of the particle per unit volume times its acceleration, is the
inertia term, the term −∇p is the pressure force per unit volume, and ρg is the particle
weight per unit volume.

Note that the inertia term is the sum of a time-varying term and a convective term

du

dt
=
∂u

∂t
+ (u · ∇)u

If the fluid density is constant, then

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p̂ (2)

where where p̂ = p+ ρgz and g = −gẑ.
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2 Euler’s Equation in Cartesian Coordinates

In Cartesian coordinates, where z points vertically upwards, the components of Euler’s
equation in the x, y and z directions are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p

∂x
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂p

∂y
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p

∂z
− g

where u, v and w are the x, y and z components of the velocity u.

3 Euler’s Equation in Streamline Coordinates

Euler’s equation, when expressed in streamline coordinates, provides useful and physically
insightful relationships between the various terms in relation to the streamlines. Let s, n
and l be respectively the coordinates along a streamline, normal to a streamline along the
radius of curvature, and in the binormal direction, see Fig. 3.

R

ŝ

n̂

streamline

pressure increases according to

∂p

∂(−n)
= ρ

V 2

R

Figure 1: Streamline coordinates

The corresponding unit vectors are ŝ, n̂ and l̂. The components of Euler equation are

along a streamline ρ
(

∂u
∂t

+ u∂u
∂s

)
= −∂p

∂s
+ ρg · ŝ

normal to a streamline ρu2

R
= − ∂p

∂n
+ ρg · n̂

binormal to a streamline 0 = ∂p
∂l

+ ρg · l̂
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If the fluid density is constant, then

along a streamline ρ
(

∂u
∂t

+ u∂u
∂s

)
= −∂p̂

∂s

normal to a streamline ρu2

R
= − ∂p̂

∂n

binormal to a streamline 0 = ∂p̂
∂l

Euler’s equation normal to a streamline indicates that the pressure in the direction normal
to a streamline increases inversely proportional to the radius of curvature of the streamline.

Integrating the equation along the streamline between points 1 and 2 along the streamline,∫ 2

1

∂u

∂t
ds+

∫ 2

1

dp

ρ
+

1

2

(
V 2

2 − V 2
1

)
+ g(z2 − z1) = C(t)

where C(t) is a function of time. If the fluid density along the streamline is constant,
then ∫ 2

1

∂u

∂t
ds+

1

ρ
(p2 − p1) +

1

2

(
V 2

2 − V 2
1

)
+ g(z2 − z1) = C(t) (3)

4 Bernoulli’s Equation

If the flow is inviscid and steady, and if additionally the density is constant along a streamline,
then Eq. (3) reduces to Bernoulli’s equation along a streamline

p+
1

2
ρV 2 + ρgz = constant

so that for any two points 1 and 2 on the same streamline,

p1 +
1

2
ρV 2

1 + ρgz1 = p2 +
1

2
ρV 2

2 + ρgz2

5 Criterion for Inviscid Flows

A necessary condition to approximate a flow as inviscid is for the inertia term ρ du/dt
to be much larger, in absolute value, than the viscous force per unit volume, which for a
newtonian fluid, is given by µ∇2u, so we must have

interia

viscous force
=
|ρ du/dt|
|µ∇2u| >> 1

Choosing L and U to be characteristic length and velocity of the flow then∣∣∣∣∣ρdudt
∣∣∣∣∣ ∼ ρ

U

L/U

|µ∇2u| ∼ µ
U

L2
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Then a necessary condition for approximating flow as inviscid is

ρ U
L/U

µ U
L2

>> 1⇒ Re ≡ ρUL

µ
>> 1

Be aware that a large Reynolds number is only a necessary condition. To apply Bernoulli’s
equation along a streamline, make sure the following is true

• flow is steady

• density is constant along streamline

• Reynolds number is very large Re >> 1

• stay away from walls, since in actual flows, and no matter how large Re is, there is
always a viscous boundary layer attached to the wall.

• Bernoulli’s equation is not applicable in regions of mixing, which are commonly
(but not exclusively) encountered when a large Re flow experiences sudden change in
geometry (expansion in particular). A large Re flow is highly unstable, since viscous
forces, being a stabilizing agent, are very small. This means that a disturbance
will be amplified causing random oscillations in the local velocity and generating a
spectrum of length and time scales ranging from large eddies all the way to eddies
so small that their characteristic Reynolds number in small enough for the viscous
force to kick in and stabilize the flow. This is Turbulence!

6 Euler’s Equation and its Relation with Vorticity

Noting that

u · ∇u = ∇|u|
2

2
− u×∇× u

where ∇× u is nothing that the vorticity ω, Eq. (1) may be expressed as

∂u

∂t
+∇|u|

2

2
− u× ω = −1

ρ
∇p+ g

It may then be seen that if the flow is inviscid, steady, incompressible, and irrotational,
then Bernoulli’s equation applies between ANY two points in the flow

p1 +
1

2
ρV 2

1 + ρgz1 = p2 +
1

2
ρV 2

2 + ρgz2

A flow is irrotational if the vorticity is zero everywhere.
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