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Integral Relations for a Control Volume

1. (Lecture 1) Control Volume vs System
System: a collection of matter of fixed identity.
Control Volume: is a volume fixed in the coordinated frame of reference and is
bounded a control surface.

2. (Lecture 1) Fundamentals physical laws for a system in primitive form
We are often interested in the rate of change of the amount of a certain physical
property contained in a system of volume V . The physical property could be mass,
momentum, energy, moment of momentum, entropy etc. The amount of physical
property contained in V may be expressed as B ≡

∫
V bρ dV so that the rate of

change is DB
Dt

. The fundamental physical laws governing the rate of change of B
is DB

Dt
= Φ. The table below presents the physical laws of conservation of mass,

momentum and energy expressed in the form dB
dt

= Φ.

Conservation Law b B Φ

mass 1 total mass:
∫
V ρ dV 0

linear momentum u total momentum:
∫
V ρu dV

∑
F

angular momentum r× u total momentum:
∫
V ρ(r× u) dV

∑
MO

energy e+ |u|2
2

+ U total energy:
∫
V ρ

(
e+ |u|2

2
+ U

)
dV

∑
δq̇ −∑ δẇ

where ρ is density, u is velocity vector, r is position vector, e is sepcific internal
energy, U is potential energy,

∑
F is the sum of all the forces (surface and body)

acting on the control volume,
∑

MO is the sum of all the moments about point
O applied to the control volume,

∑
δq̇ is the sum of heat gained by the comtrol

volume, and
∑
δẇ is the sum of work done by the control volume (shaft, pressure,

viscous stresses).

3. The need for a control volume approach and the Reynolds Transport
Theorem
In fluid mechanics, a system undergoes changes in its shape ans volume. It could
experience stretching, twisting, expansion etc. It is therefore difficult to predict V
in a Lagrangian sense. It is more convenient to apply the laws of physics for a
control volume since it is a fixed volume. In order to apply the above physical laws
for a control volume, we need to express the rate of change of the total quantity B
in terms of rate of change inside the control volume and fluxes crossing the control
surface. In other words:

D
Dt

∫
V bρ dV

?→ (?)C.V.
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From the figure

DB

Dt
=

(BI(t+ dt) +BII(t+ dt))− (BI(t) +BIII(t+ dt))

dt

=
BI(t+ dt)−BI(t)

dt
+
BII(t+ dt)

dt
− BIII(t+ dt)

dt

=
∂

∂t
BCV + (flux)out − (flux)in

=
∂

∂t

∫
CV

bρ dV +
∫
CS

b dwout −
∫
CS

b dwin

where w is the flow of quantity b through the control surface. Reynolds Transport
Theorem

D

Dt

∫
system

bρ dV =
∂

∂t

∫
CV

bρ dV +
∫
CS

b (ρu · dA)

System at t

System at t+dt

Control Volume

III
III

Figure 1: Schematic.

If the control volume (of constant shape) is moving at a constant velocity uCV, then
Reynolds transport theorem assumes the form

D

Dt

∫
system

bρ dV =
∂

∂t

∫
CV

bρ dV +
∫
CS
b (ρur · dA)

where the relative velocity ur = u− uCV.

4. (Lecture 2) Convervation of mass (example)

5. (Lecture 2 + Lecture 3) Conservation of linear momentum (example)
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6. (Lecture 3) Conservation of angular momentum (example)

7. (Lecture 4) Conservation of energy (example)

Read: White Sections 3.1-3.6
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