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Viscous Flow in Pipe Networks: Energy Balance

1 Integral Form of the Energy Equation for a Control
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For a control volume V bounded by control surface A, the conservation of energy is
governed by the following equation

d

dt

∫
V
ρ e dV +

∫
A
ρ e (u · n̂) dA = Q̇← − Ẇ→

bulk − Ẇ→
viscous +

∑
Ẇ←

ext −
∑

Ẇ→
ext

where ρ is density, e ≡ û + |u2|
2

+ gz is the sum of specific internal energy û, specific
kinetic energy, and specific potential energy respectively. The velocity is u and the unit
outward normal vector at the control surface is n̂. The rate of heat transferred across the
boundary into the fluid (Watt) is Q̇←. The rates of work done by the fluid due to pressure

and viscous forces are respectively Ẇ→
bulk and Ẇ→

viscous. The rate of work done by the fluid

onto external devices (such as shaft work in turbine) is
∑
Ẇ→

ext and the work done on the
fluid by external devices (such as pumps) is

∑
Ẇ←

ext.

In order to find an expression for the work done on the fluid by the surrounding due
to pressure, we proceed as follows. The force exerted on the fluid per unit volume is
−∇p so that the total force exerted on the fluid at the control surface is

∫
V(−∇p) dV =∫

A(−p)n̂ dA, where n is the unit normal vector pointing outward from the fluid toward
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the surrounding. The force due to pressure on surface element dA is then dF = −pn̂ dA.
If the fluid is moving with a velocity u, then it will cover a distance of dx = u dt over time
dt. Then the work done on the moving fluid by pressure during dt is dW← =

∫
A dF ·dx =

dt
∫
A(−p)u · n̂ dA. The rate at which work is done by the fluid is then

Ẇ→
pressure =

∫
A

(p)u · n̂ dA

Notice that for a uniform outflow form a channel, the rate of work done by the fluid is
p V A where V is the speed and A is the cross sectional area of the channel. For a uniform
flow into a channel, the rate of work done by the fluid is −p V A.

The viscous work done by the environment on the fluid is found in a similar manner

Ẇ→
viscous =

∫
A
τ · u dA

where τ is the viscous stress. Now that at a solid boundary Ẇ→
viscous = 0. This is applicable

for both inviscid flows (τ = 0) and viscous flows (u = 0 at solid boundary).

Now if we move the work done by bulk flow to the left hand side of the energy equation
we get

d

dt

∫
V
ρ e dV +

∫
A
ρ

(
e+

p

ρ

)
(u · n̂) dA = Q̇← − Ẇ→

viscous +
∑

Ẇ←
ext −

∑
Ẇ→

ext

Noting that û+ p/ρ = ĥ is the enthalpy, then

d

dt

∫
V
ρ

(
û+
|u2|
2

+ gz

)
dV +

∫
A
ρ

(
ĥ+
|u2|
2

+ gz

)
(u · n̂) dA =

Q̇← − Ẇ→
viscous +

∑
Ẇ←

ext −
∑

Ẇ→
ext

Special cases

• Steady state:
For the case of steady flow, the energy equation becomes∫

A
ρ

(
ĥ+
|u2|
2

+ gz

)
(u · n̂) dA = Q̇← − Ẇ→

viscous +
∑

Ẇ←
ext −

∑
Ẇ→

ext

• Steady uniform flow:
If the flow is steady and the control surface is is composed of a solid boundary plus
inlet and outlet sections such that the properties are (spatially) uniform over each
section (see Figure below), then the energy equation becomes

∑
ṁ→

(
ĥ+
|u2|
2

+ gz

)
out

−
∑

ṁ←
(
ĥ+
|u2|
2

+ gz

)
in

=

Q̇← − Ẇ→
viscous +

∑
Ẇ←

ext −
∑

Ẇ→
ext
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2 Steady Single Inlet-Single Outlet Incompressible

Flow with negligible heat transfer

The enthalpy is ĥ = û+ p/ρ. For a simple compressible matter in the compressed liquid
state, the density is constant and the internal energy is approximately a function of
temperature, û ' û(T ). In the absence of heat transfer across the boundary, the only
way the internal energy (temperature) can change is by viscous heat dissipation of the
work done to overcome friction. If we neglect this (usually very small) change in internal
energy, then for a steady single inlet-single single-outlet incompressible flow with no heat
transfer, the energy equation for the control volume shown in Fig. 1 is

∫
A2

(
p+ ρ

|u2|
2

+ ρgz

)
u dA−

∫
A1

(
p+ ρ

|u2|
2

+ ρgz

)
u dA = −Ẇ→

viscous +
∑

Ẇ←
ext −

∑
Ẇ→

ext

We assume that the pressure is uniform at cross sections 1 and 2. Expressing u =

Figure 1: Sample Control Volume

V +u′, z = Z+z′, where V and Z are respectively the average velocity and cross sectional
elevation: V = 1

A
∫
A udA and Z = 1

A
∫
A zdA, then after dividing by ṁg, where

ṁ =
∫
A2

ρu dA =
∫
A1

ρu dA

we get

p1
ρg

+ α1
V 2
1

2g
+ β1Z1 =

p2
ρg

+ α2
V 2
2

2g
+ β2Z2 +

Ẇ→
viscous

ṁg
−
∑ Ẇ←

ext

ṁg
+
∑ Ẇ→

ext

ṁg
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where

α =
1

A

∫
A

(
1 + 3

u′2

V 2
+
u′3

V 3

)
dA

β =
1

A

∫
A

(
1 +

u′z′

V Z

)
dA

The external work into the control volume (other than pdv work) could be from a pump
so that the pump head is

hp =
∑ Ẇ←

ext

ṁg

The external work out of the control volume (other than pdv work) could be shaft work
in a turbine so that the turbine head is

ht =
∑ Ẇ→

ext

ṁg

The viscous work accounts for losses due to skin friction along the channels hf and minor
losses in bends, valves, elbows, etc, so that losses head is

hf +
∑

hm =
Ẇ→

viscous

ṁg

Assuming β1 = β2 = 1, then

p1
ρg

+ α1
V 2
1

2g
+ Z1 =

p2
ρg

+ α2
V 2
2

2g
+ Z2 + hf +

∑
hm − hp + ht (1)

Note that for uniform flow α = 1, for fully developed parabolic (laminar) flow α =, and
for fully developed turbulent flow α =.

2.1 Head Loss in a pipe (hf) - The Friction Factor

For fully developed flow in a circular pipe of diameter d and length L (no minor losses,
no turbine work, no pump work, V1 = V2, α1 = α2) shown in Fig. 2, we get from Eq. (1)

hf = ∆Z +
∆p

ρg
(2)

where ∆p = p1 − p2 and ∆Z = Z1 − Z2. Applying the conservation of momentum in the
flow direction for a control volume of length L and diameter d, the net pressure force,
gravity, and friction force are related, at steady conditions, by

∆p(πR2) + ρg(πR2)L sinφ− τw(2πRL) = ṁ(V2 − V1) = 0
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Figure 2: Control volume for pipe section

Then

hf =
∆p

ρg
+ ∆Z =

4τw
ρg

L

d
≡ f

L

d

V 2

2g
(3)

where f is the friction factor, which is presented next for fully developed laminar and
turbulent pipe incompressible pipe flows.

Laminar Flow:
Recall that for a Poiseuille (laminar fully developed steady incompressible flow in a circular
pipe),

u = 2V

(
1− r2

R2

)
, where V =

1

2

(
∆p+ ρg∆Z

L

)
R2

4µ
(4)

Noting that τw = |µdu/dr|r=R, we get for laminar flow

flaminar =
64

Red
(5)

Turbulent Flow:
For turbulent flow, we expect from dimensional analysis

hf = hf (ρ, µ, V, L, d, ε)⇒ f = f
(
Red,

ε

d

)
where ε is the surface roughness in m, listed in Table 3 for different materials. From
experimental correlation,

1

f
1/2
turbulent

= −2.0 log

(
ε/d

3.7
+

2.51

Redf
1/2
turbulent

)
Colebrook, Moody’s Chart (6)
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1

f
1/2
turbulent

' −1.8 log

(ε/d
3.7

)1.11

+
6.9

Red

 Haaland (7)

Note that Moody’s chart, shown in Fig. 4 is in Figure 6.13 in the book.

2.2 Minor Losses

In addition to the friction losses in fully developed flow along straight constant area pipe
sections, there are losses at (i) pipe entrance or exit, (ii) sudden expansion or contractions,
and in (iii) bends, elbows, tees and other fittings, (iv) valves, open or partially closed,
and (5) gradual expansions or contractions. These minor losses are expressed as

∑
hm =

∑ (∆p)i
ρg

=
∑(

V 2

2g
K

)
i

(8)

where (∆p)i is the pressure loss across component i, and Ki is the loss coefficient of
component i, defined as

Ki =

(
hm

V 2/2g

)
i

(9)

Note that if the pipe diameter does not change in the entire system,

∑
hm =

∑ (∆p)i
ρg

=
V 2

2g

∑
K (10)

The loss coefficients for different components are provided in tables, charts, or figures.
See in the Book.

3 The Bottom Line

So for a steady single inlet-single single-outlet incompressible flow with no heat transfer,
the energy equation for the control volume shown is

p1
ρg

+ α1
V 2
1

2g
+ Z1 =

p2
ρg

+ α2
V 2
2

2g
+ Z2 +

∑
i

(
fi
Li

di

V 2
i

2g

)
+
∑
j

(
Kj

V 2
j

2g

)
− hp + ht

where summation i is over all pipe sections of different diameters, and summation j is
over all components that contribute to minor losses.
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Figure 3: Surface roughness for materials.

Figure 4: Moody’s Chart
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