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A Note on the Integral form of the Conservation of Energy for a Control
Volume

For a control volume V bounded by control surface S, the conservation of energy is
governed by the following equation

d

dt

∫
V
ρ e dV +

∫
S
ρ e (u · n̂) dS = Q̇gained + Ẇpressure + Ẇviscous +

∑
Ẇ ext

on fluid −
∑

Ẇ ext

by fluid

where ρ is density, e ≡ û+ |u2|
2

+gz is the sum of specific internal energy û = cvT , specific
kinetic energy, and specific potential energy respectively. The velocity is u and the unit
outward normal vector at the control surface is n̂. The rate of heat gain by the fluid
(Watt) is Q̇gained. The rates of work done by pressure and viscous forces on the fluid

are respectively Ẇpressure and Ẇshear. The work extracted from the fluid, shaft work to

turbine for example, is
∑
Ẇ ext

by fluid and the work done on the fluid by external devices

such as pumps is
∑
Ẇ ext

on fluid.

In order to find an expression for the work done on the fluid by the surrounding due
to pressure, we proceed as follows. The force exerted on the fluid per unit volume is
−∇p so that the total force exerted on the fluid at the control surface is

∫
V(−∇p) dV =∫

S(−p)n̂ dS, where n is the unit normal vector pointing outward from the fluid toward the
surrounding. The force due to pressure on surface element dS is then dF = −pn̂ dS. If the
fluid is moving with a velocity u, then it will cover a distance of dx = u dt over time dt.
Then the work done by the moving fluid during dt is dW =

∫
S dF ·dx = dt

∫
S(−p)u · n̂ dS.

The rate at which work is done on the fluid is then

Ẇpressure =
∫
S
(−p)u · n̂ dS

Notice that for a uniform outflow form a channel, the rate of work done on the fluid is
−p V A where V is the speed and A is the cross sectional area of the channel. For a
uniform flow into a channel, the rate of work done on the fluid is p V A.

The viscous work done by the environment on the fluid is found in a similar manner

Ẇviscous =
∫
S

τ · u dS

where τ is the viscous stress. Now that at a solid boundary Ẇviscous = 0. This is appli-
cable for both inviscid flows (τ = 0) and viscous flows (u = 0 at solid boundary).

Now if we move the work done on the fluid due to pressure to the left hand side of the
energy equation we get
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d

dt

∫
V
ρ e dV +

∫
S
ρ

(
e+

p

ρ

)
(u · n̂) dS = Q̇gained + Ẇviscous +

∑
Ẇ ext

on fluid −
∑

Ẇ ext

by fluid

Noting that û+ p/ρ = ĥ is the enthalpy, then

d

dt

∫
V
ρ

(
û+
|u2|
2

+ gz

)
dV +

∫
S
ρ

(
ĥ+
|u2|
2

+ gz

)
(u · n̂) dS =

Q̇gained + Ẇviscous +
∑

Ẇ ext

on fluid −
∑

Ẇ ext

by fluid

Special cases

• Steady state:
For the case of steady flow, the energy equation becomes∫
S
ρ

(
ĥ+
|u2|
2

+ gz

)
(u · n̂) dS = Q̇gained + Ẇviscous +

∑
Ẇ ext

on fluid −
∑

Ẇ ext

by fluid

• Steady uniform flow:
If the flow is steady and the control surface is is composed of a solid boundary plus
inlet and outlet sections such that the properties are (spatially) uniform over each
section (see Figure below), then the energy equation becomes

∑
ṁout

(
ĥ+
|u2|
2

+ gz

)
out
−
∑

ṁin

(
ĥ+
|u2|
2

+ gz

)
in

=

Q̇gained +
∑

Ẇ ext

on fluid −
∑

Ẇ ext

by fluid
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