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Conservation Laws for Mass, Momentum, Energy and the Non-Conservation
of Entropy

Note that bold letters and symbols refer to vectors.

1 Subject of Study

Any scientific analysis is incomplete without precise specification of the subject of study.
When applying the laws of thermodynamics, specification of the subject of study is usually
the first thing to do. When the subject of study is matter of fixed identity, i.e. it always
consists of the same molecules, then we are referring to a control mass. Examples include
a block of copper, the gas inside a sealed container, etc. Tracking the same molecules is
not always an easy task and is at times impossible. Consider, for example combustion of
fuel and air in the combustion chamber of a gas turbine. Upon combustion, the identity
of molecules change. Not only that, molecules which are at time t inside the combustion
chamber moved to somewhere else, say the turbine, at t + ∆t. So if we are interested
in what happens inside the combustor, we find ourselves chasing molecules far from the
combustor at later times. So it makes sense in this case, to take the combustor itself (or
the volume enclosed by the combustor walls) as the subject of study, with (fuel + air)
molecules flowing in across the boundary and products molecules flowing out across the
combustor boundary. This is an example of a control volume; a predefined volume that
usually contains a region of interest or a device of interest. The boundary of the control
volume across which material flows is called the control surface.

2 Conservation Laws in Thermal and Fluid Sciences

1. conservation of mass (continuity)

2. conservation of momentum (Newton’s second law)

3. conservation of energy (first law of thermodynamics)

4. non-conservation of exergy (second law of thermodynamics)

The field of thermal and fluid sciences consists usually of the following interconnected
areas: thermodynamics (MECH 310, laws 1, 3 and 4), fluid mechanics (MECH 410, laws
1 and 2), and heat transfer (MECH, laws 1 and 3).
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3 Conservation of Mass

3.1 Conservation of Mass for a Control Mass

Since a control mass (C.M.) consists of matter of fixed identity, then by definition the
mass of a control mass is conserved, i.e.

dmC.M.

dt
= 0⇒ d

dt

∫
V
ρ dV = 0 (1)

where ρ is the density (kg/m3) is generally a function of time and space. The volume of
the control mass is V and in cartesian coordinates dV = dx dy dz. In equation (1), one
should not mistake d()/dt for ∂()/∂t; the latter is the derivative in time holding everything
else fixed, i.e. at a constant position. The total derivative dΠ/dt is the change of property
Π in time as the particle is moving.

3.2 Conservation of Mass for a Control Volume

3.2.1 Integral Form

Consider a control volume V bounded by control surface S. The integral form of the
conservation of mass states that the rate of accumulation of mass inside the control volume
is balanced by the surface integral of mass flux crossing the control surface

∂

∂t

∫
V
ρ dV +

∫
S
ρu · n̂ dS = 0 (2)

and where t is time, density is inverse of specific volume ρ ≡ 1
v
, u is the velocity vector.

The term n̂ is the unit normal vector on the control surface pointing away from the control
volume, as shown in Figure 1. Note that the quantity ρu · n̂ is the mass flux (mass per
unit area per unit time) leaving the control volume across the control surface. We may

u

ˆu.n

n̂

V

S

dS

Figure 1: Schematic for conservation of mass for a control volume.

generalize the concept of flux to calculate properties carried by bulk flow crossing the
control surface of a control volume. For example, the momentum flux is equal to the
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mass flux times the velocity u, the total energy flux is equal to the mass flux times the
specific total energy e, the entropy flux is equal to the mass flux times the specific entropy
s.

3.2.2 Differential Form

Using Gauss’s theorem, we may convert the surface integral to a volume integral as follows:

Consider volume V (in 3D space) which is compact and has a piecewise smooth boundary
∂V, then for a continuous and differentiable vector field F(x), the following identity holds∫

V
∇ · (F) dV =

∫
∂V

F · n̂ dS

Setting F = ρu, Eq. (5) can then be written as

∂

∂t

∫
V
ρ dV +

∫
V
∇ · (ρu) dV = 0

Since in our choice of coordinates, space and time are independent, then∫
V

(
∂ρ

∂t
+∇ · (ρu)

)
dV = 0

The above equation holds for any choice of control volume! Then the integrand itself
must be zero

∂ρ

∂t
+∇ · (ρu) = 0 (3)

Eq. (3) is the differential form of the conservation of mass law; it is also known as the
continuity equation.

4 Conservation of momentum: Newton’s Second Law

4.1 Conservation of momentum: Control Mass

Newton’s second law states that for a rigid body, the summation of forces acting on the
body is equal to its mass times the acceleration. If the body is not rigid, but consists of
matter of fixed identity, then conservation of momentum for a control mass states that the
sum of forces acting on a control mass is equal to the rate of change its momentum. If we
decompose the control mass into small volumes, then the momentum of fluid contained
in differential volume dV , centered at x, is equal to the mass contained in dV times the
velocity1 u(x), i.e. (dm)u = (ρdV)u. The total momentum contained in the control mass
is then

∫
V ρu dV . The conservation of momentum for a control mass, in integral form, is

then expressed as

∑
FC.M. =

d

dt

∫
V
ρu dV (4)

1Since dV is very small, we assume that density and velocity are uniform over dV and are equal to the
density and velocity at its center x
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4.2 Conservation of momentum: Control Volume

For a control volume, we must also include the rate of momentum flow across the control
surface carried by bulk flow. This is nothing but the moment flux integrated over the
control surface. So, for a control volume

∑
FC.V. =

∂

∂t

∫
V
ρu dV +

∫
S
ρu (u · n̂) dS (5)

4.3 Forces

One classification of forces is according to whether they act throughout the volume, or on
a surface, or along a line interface. This classification arises from the molecular nature of
these forces.

4.3.1 Body Forces

A body force is a force that is proportional to the volume. More specifically, the body
force acting on a differential volume dV is proportional to dV , i.e. dFb ∝ dV . Example is
gravity, in this case, dFb = ρgdV , where g is gravity so that Fb = mg. Other examples
of body forces are centrifugal and centripetal forces, and coriolis force induced by motion
in a rotating frame of reference.

4.3.2 Surface Forces

Surface forces are forces that arise from momentum exchange between atoms (molecules)
and neighboring atoms (molecules). The atoms (molecules) exchanging momenta by colli-
sion type interactions could belong to the same matter or to different matter. For example,
the stress state inside a fluid arise form exchange of momentum among atoms (molecules)
of the same fluid. On the other hand, in the example of fluid flow over a boundary such
airflow over airplane wing, momenta exchanges between atoms (molecules) of the fluid
and atoms (molecules) of the solid boundary give rise to normal (pressure) and tangential
(shear) forces on the boundary.

The pressure at a given position x in a fluid is the statistical average of the normal
component of the force imparted by molecular momenta exchange across a fictitious plane
surface passing through x per unit area. The interesting thing about pressure is that the
magnitude of this normal force component is independent of the orientation of the plane
surface. It is, however, a function of position, i.e. p = p(x), i.e. the pressure generally
changes with position. For example, as air moves over a wing, the pressure at a point
slightly above the wing is smaller than atmospheric, whereas the pressure at a point
slightly below the wing is a higher than atmospheric. One may observe that the force due
to pressure acting on differential control surface dS is −pn̂ dS. Note that the negative
sign is due to the fact the pressure always acts to compress your control volume where
n̂ is the unit normal vector pointing away from the control volume. The total pressure
force acting on a control volume or a control mass is then

Fp =
∫
S
−pn̂ dS (6)
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It may also be shown that, equivalently,

Fp =
∫
V
−∇p dV (7)

Please note that while pressure is a surface force per unit area, −∇p is body force per
unit volume.

The components of the momenta exchange among the molecules that are tangent to the
surface of interest give rise to viscous or shear stresses in a fluid. We call this force Fshear.
We do not need to know how it looks like quantitatively at this point. One may think
of shear or the viscous force as rubbing among adjacent layers of fluid. The outcome
of this rubbing is propagation of retardation originating at a fixed solid wall at which
the velocity must be zero. The stationary fluid molecules at the wall end up retarding
those next to the wall them due to momentum exchange. And those next to the wall end
up retarding those next to them on the fluid interior and so on. Obviously, this results
in reduction in kinetic energy with an equivalent dissipation into heat. The process is
obviously irreversible. Why?

4.3.3 Line Forces

Surface tension. Not discussed in this course.

5 Conservation of energy: First Law of Thermody-

namics

5.1 First Law for a Control Mass

For a control mass, no bulk flow is allowed to cross the boundary so that the only means
of transferring energy to (from) control mass across the boundary is via heat and/or work,
so that

dEC.M.

dt
= Q̇←V + Ẇ←

V (8)

Defining e (kJ/kg) as the specific total energy (total energy per unit mass), then

E =
∫
V
ρe dV (9)

so that
d

dt

∫
V
ρe dV = Q̇←V + Ẇ←

V (10)

where V is the volume of the control mass.

Note that E is the total energy which is the sum of the kinetic energy, potential energy
and internal (thermal) energy,

E = K.E. + P.E. + U (11)

or

e =
1

2
V 2 + gz + u (12)
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where u is the specific internal energy, V 2/2 is the specific kinetic energy and gz is the
specific potential energy.

5.2 First Law for a Control Volume

Consider a control volume V bounded by control surface S. The first law is essentially
conservation of energy that states that the rate of change of total energy inside the control
volume must be balanced by the sum of the rate of work transfer into the control volume
across the control surface, the rate of heat transfer into the control volume across the
control surface, and rate of total energy transfer into the control volume by bulk flow
across the control surface:

d

dt

∫
V
ρ e dV +

∫
S
ρ eu · n̂ dS = Q̇←V + Ẇ←

V (13)

where

• the rate of change of total energy (EV =
∫
V ρ e dV) inside the control volume is dEV

dt
,

• the surface integral of the flux of total energy crossing the control surface is
ĖS =

∫
S ρ eu · n̂ dS

• the rate of heat transfer across the control surface is Q̇←V , and

• the rate of work done on the control volume is Ẇ←
V

and where t is time, density is is inverse of specific volume ρ ≡ 1
v
, specific total energy is

the sum of specific internal energy u, specific kinetic energy and specific potential energy
e ≡ u+ 1

2
|u|2 +gz, where u is the velocity vector2 , z is the elevation and g is gravity. The

term n̂ is the unit normal vector on the control surface pointing away from the control
volume.

6 The Flux Term

The flux of specific property b is nothing but the amount of ρb carried across the control
surface per unit area per unit time, ρ bu · n̂. Note when b = 1, we are then talking about
the mass flux ρu · n̂, with units of kg/m2/s. If b ≡ u, then we are talking about the
momentum flux, ρu u · n̂ with units N/m2/s. And if b ≡ e, then we are talking about the
total energy flux ρ eu · n̂, with units J/m2/s. Similarly the entropy flux is ρ su · n̂ with
units J/K/m2/s, where s is the specific entropy.

The total mass crossing the boundary per unit time is the integral of the mass flux over
the control surface, ṁS =

∫
S ρu · n̂ dS. The quantity ρu · n̂ dS is the rate of mass

crossing the differential surface element dS and may be represented as dṁ = ρu · n̂ dS.
Similarly the total energy crossing the control surface is the integral of the total en-
ergy flux over the control surface ĖS =

∫
S ρ eu · n̂ dS =

∫
S e dṁ. Also the total entropy

crossing the control surface is the integral of the entropy flux over the control surface

2Please note that u is the specific internal energy while bold u is the velocity vector.
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ṠS =
∫
S ρ su · n̂ dS =

∫
S s dṁ.

We now look at two special cases:

• At a solid boundary, the flux of any property is zero since the velocity component
normal to the boundary is zero at the boundary; this is known as the no-through
flow boundary condition at a solid boundary.

• If the enthalpy is uniform over a part of the control surface3, the rate of enthalpy
transport out of the control volume across that part of control surface is ṁ→h.

7 Energy Storage Modes: Internal Energy, Kinetic

Energy, and Potential Energy

8 Energy Transfers Across Boundary of Control Vol-

ume/Mass

8.1 Work Interactions across Control Surface

The work done on the control volume may be split into three components

Ẇ←
V = Ẇ←

V,bulk + Ẇ←
V,expansion + Ẇ←

V,shaft (14)

where

• Ẇ←
V,bulk = −

∫
S pu · n̂ dS is the work done by bulk flow per unit time. This may

be understood as follows. During the time period from t to t + dt, the amount
of mass δm that crossed differential control surface area dS is ρu · n̂ dS dt. If we
take a control mass that comprises of the control volume plus the δm, then at
time t + dt, the amount of mass δm is now completely inside the control volume
as shown in Figure 2. So we have essentially compression during which the volume
of our control mass was reduced from V + δV to V , where δV = (u · n̂ dS) dt.
If p is the pressure of the differential mass δm, then the work done by bulk flow
during time span dt on the control volume across differential surface element dS
is δW← = −p δV = −p (u · n̂ dS) dt. The rate of work done by bulk flow on the
control volume across a differential control surface area dS is δW←

δt
= −pu · n̂ dS.

Integrating over the control surface, we get

Ẇ←
V,bulk = −

∫
S
pu · n̂ dS (15)

• If part of the control surface is moving such as the case of a moving piston, then
we have essentially work done on control volume by expansion (or compression)
according to

Ẇ←
V,expansion = − d

dt

∫
V
p? dV (16)

where p? is the pressure on the inner surface of the moving boundary.

3This part could correspond to an inlet or an outlet.
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control mass is 
the gray areaδm

δm

time t time t+dt

Figure 2: Schematic for understanding work done by bulk flow.

• Other forms of work crossing the control surface such as shaft work, electrical work
are included in Ẇ←

V,shaft.

Control Volume

Q0

.←

Q1

.←

Q2

.←

Qk

.←

.
Wshaft
←

p *

piston

.
m1 , h1, z1, u1
←

.
m2 , h2, z2, u2
→

.
m3 , h3, z3, u3
→

.
mi , hi, zi, ui
←

Control 
Surface

Figure 3: Schematic for conservation of energy for a control volume.

8.2 Heat Interactions across Control Surface

We assume that the control volume is exchanging heat Q̇←0 with environment at temper-
ature T0 in addition to other heat exchanges Q̇←k with various components or thermal
reservoirs taking place at temperatures Tk, with k = 1, 2, ..., so that

Q̇← = Q̇←0 +
∑
k

Q̇←k (17)
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The reason we separated heat interaction with the environment from heat interaction
with other systems is both useful for understanding the heat losses to the environments
as well as for the second law formulation for a control volume.

9 Conservation Laws for a Control Volume

Noting the h = u+ pv and substituting the expressions for heat and work in the first law,
the conservation of mass and energy for a control volume

d

dt

∫
V
ρ dV +

∫
S
ρu · n̂ dS = 0 (18)

d

dt

∫
V
ρ

(
u+

1
2
|u|2 + gz

)
dV +

∫
S
ρ

(
h+

1
2
|u|2 + gz

)
u · n̂ dS = Q̇←0 +

∑
k

Q̇←k −
d

dt

∫
V

p? dV + Ẇ←V,shaft

(19)

10 Mutli Inlets/Outlets with Uniform Properties

We consider the case in which bulk flow takes places across multiple inlets and multiple
outlets. We also assume that across the inlet/outlet cross sections (which is the inter-
section between the inlet/outlet and the control volume), the thermodynamic properties
are uniform. In this case, the flux terms in the conservation of mass and energy equation
becomes ∫

S
ρu · n̂ dS =

∑
i

ṁ→i∫
S
ρ
(
h+

1

2
|u|2 + gz

)
u · n̂ dS =

∑
i

ṁ→i

(
h+

1

2
|u|2 + gz

)
i

The conservation of mass and energy for a control volume can then be expressed

dm

dt
=
∑
i

ṁ←i (20)

dE

dt
= Q̇←0 +

∑
k

Q̇←k −
d

dt

∫
V
p? dV + Ẇ←

V,shaft +
∑
i

ṁ←i

(
h+

1

2
|u|2 + gz

)
i

(21)

where

m =
∫
V
ρ dV

E =
∫
V
ρ
(
u+

1

2
|u|2 + gz

)
dV

11 Special Cases

11.1 Steady State

If, in addition to the assumption that each inlet or outlet is characterized by uniform
properties across its cross section, the control volume is in a steady state, then d()/dt = 0,
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then ∑
i

ṁ←i = 0 (22)

Q̇←0 +
∑
k

Q̇←k + Ẇ←
V,shaft +

∑
i

ṁ←i

(
h+

1

2
|u|2 + gz

)
i

= 0 (23)

11.2 Unsteady Process

If the control volume undergoes an unsteady process between t1 and t2, then integrating
equations (20) and (21) from t1 to t2, we get

(m2 −m1)V =
∑
i

m←i (24)

(E2 − E1)V = Q←0 +
∑
k

Q←k −
∫ V2

V1

p? dV +W←
shaft +

∑
i

∫ t2

t1
ṁ←i

(
h+

1

2
|u|2 + gz

)
i
dt (25)

where

m1 =
∫
V1

ρ dV

m2 =
∫
V2

ρ dV

m←i =
∫ t2

t1
ṁ←i dt

E1 =
∫
V1

ρ e dV

E2 =
∫
V2

ρ e dV

Q←0 =
∫ t2

t1
Q̇0 dt

Q←k =
∫ t2

t1
Q̇k dt

W←
shaft =

∫ t2

t1
Ẇ←

shaft dt

If the thermodynamic properties are spatially uniform inside the control volume, then

(E2 − E1)V = (m2e2 −m1e1)V (26)

If for each inlet/outlet the thermodynamic properties are constant (spatially uniform and
time independent) across the cross section, then

∑
i

∫ t2

t1
ṁ←i

(
h+

1

2
|u|2 + gz

)
i
dt =

∑
i

m←i

(
h+

1

2
|u|2 + gz

)
i

(27)
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