Drop Quiz 2

Given a body of fluid with density that varies linearly from ρ_{1} at the surface to ρ_{2} at the bottom (depth H). What is the force due to pressure acting on a rectangular vertical gate of height h (from depth $H-h$ to depth H). The width of the gate is w.

Solution

The equation governing fluid statics is

$$
-\nabla p+\rho \mathbf{g}=\mathbf{0}
$$

Noting that $\mathbf{g}=-g \hat{\mathbf{z}}$, then

$$
\frac{d p}{d z}=-\rho g
$$

Since $l=-z$ (see figure), then $p-p_{a}=\int_{0}^{l} \rho g d l$.
Since the density varies linearly from ρ_{1} at the surface to ρ_{2} at the bottom then $\rho=$ $\rho_{1}+\frac{l}{L}\left(\rho_{2}-\rho_{1}\right)$. Then

$$
p(l)-p_{a}=\int_{0}^{l}\left[\rho_{1}+\frac{l}{L}\left(\rho_{2}-\rho_{1}\right)\right] g d l=g\left(\rho_{1} l+\frac{l^{2}}{2 L}\left(\rho_{2}-\rho_{1}\right)\right)
$$

The force due to pressure is

$$
\begin{aligned}
\mathbf{F} & =\int-p \hat{\mathbf{n}} d A=\hat{\mathbf{x}} w \int_{H-h}^{H}\left(p-p_{a}\right) d l \\
& =\hat{\mathbf{x}} w g \int_{H-h}^{H}\left(\rho_{1} l+\frac{l^{2}}{2 L}\left(\rho_{2}-\rho_{1}\right)\right) d l
\end{aligned}
$$

