MECH 314, SPRING 2010, Drop Quiz 1 - Section 4

Problem 4.18 (White)

Conservation of mass in differential form is
$\frac{D \rho}{D t}+\rho \nabla \cdot \mathbf{u}=0$
or
$\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{u})=0$
Noting that $\rho=\rho(t)$ and $\mathbf{u}=u(x, t) \hat{\mathbf{x}}$ where $u(x, t)=V(1-x / L(t))$, then $\frac{d \rho}{d t}+\rho \frac{\partial u(x, t)}{\partial x}=0 \Rightarrow \frac{d \rho}{\rho}=\frac{V}{L(t)} d t$

Note, however, that $\rho_{0} L_{0}=\rho L$, then $\frac{d \rho}{\rho^{2}}=\frac{V}{\rho_{0} L_{0}} d t$
Integrating from $t=0$, at which $\rho=\rho_{0}$ to t, we get $\frac{1}{\rho_{0}}-\frac{1}{\rho}=\frac{V t}{\rho_{0} L_{0}}$ so that $\rho=\frac{\rho_{0}}{1-V t / L_{0}}$.

Note that at $t=0, \rho=\rho_{0}$ and when $t=L_{0} / V$ we get $\rho=\infty$, why?

