MECH314 QUIZ 2
 CLOSED BOOK - NO FORMULAE SHEET ALLOWED

If needed, consider the atmospheric pressure $P_{\text {atm }}$ equivalent to $100 \mathrm{kPa}, g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, and the water density as $1000 \mathrm{~kg} / \mathrm{m}^{3}$.

Problem 1 [40 pts]

The water syringe shown in the figure is similar to those used in the medical field for intravenous injections. For the current position shown with $\mathrm{H}=5 \mathrm{~cm}$, what should the applied plunger force \mathbf{F} be to achieve a volumetric flow rate of $15 \mathrm{ml} / \mathrm{sec}$. (1 ml) is equivalent to $\left(1 \times 10^{-6} \mathrm{~m}^{3}\right.$). You may neglect friction in the system. The cylinder diameter is $\mathrm{D}_{\mathrm{cyl}}=20 \mathrm{~mm}$ and the jet dia. $\mathrm{D}=1 \mathrm{~mm}$.

Problem 2 [40 pts]
A number of FEA students have suggested that AUB should install a water fountain next to the Bechtel Building to beautify Lower Campus. It is expected that the fountain will be continuously operated only during school days (approx. 150 days per year). In one suggested design, the fountain will have 20 identical, vertical jets similar to the one shown in the figure with each jet driven by its own pump. The electrically powered pump transfers water from a constant level reservoir to the fountain as shown. The jet leaves the pipe end with a diameter D $=12 \mathrm{~mm}$, and velocity $\mathrm{V}=20 \mathrm{~m} / \mathrm{s}$. Take H_{1} to be $185 \mathrm{~cm}, \mathrm{H}_{2} 100 \mathrm{~cm}$, and $\mathrm{H}_{3} 75 \mathrm{~cm}$. The friction head loss in the whole system is approximately estimated to be 45 cm .
A. Estimate the power consumption for one pump.
B. Compute the electric power consumption per pump if the pump efficiency is 80%.
C. What are the electricity costs in USD for running this 20-jet fountain over one year. It costs AUB approximately 3 cents per kilo Watt-Hour (kW-h). One USD is equivalent to 100 cents.

Problem 3 [20 pts]
a) One can use the Navier Stokes equation to study the flow details inside a pump or a fan like the one shown in the figure. Write the appropriate boundary conditions at points A and B. Point A is on the tip of the rotating blade and point B lies on the stationary casing.
b) Illustrate the difference between local and convective accelerations in a fluid flow.

USEFUL FORMULAS

Bernoulli: $p_{1}+\frac{1}{2} \rho V_{1}^{2}+\rho g z_{1}=p_{2}+\frac{1}{2} \rho V_{2}^{2}+\rho g z_{2}$
Energy Equation: $p_{1}+\frac{1}{2} \rho V_{1}^{2}+\rho g z_{1}=p_{2}+\frac{1}{2} \rho V_{2}^{2}+\rho g z_{2}+\rho g h_{f}+\rho g h_{t}-\rho g h_{p}$

Efficiency: $\eta_{\text {pump } / \text { turbine }}=\frac{\text { useful power output }}{\text { paid power input }}$
Mass conservation: $\frac{\partial\left(m_{c v}\right)}{\partial t}=\sum_{\text {inlet }} \dot{m}-\sum_{\text {outlet }} \dot{m}$

Steady momentum conservation: $\sum \vec{F}=\sum_{\text {outlet }} m \dot{\vec{V}}-\sum_{\text {inlet }} m \dot{\vec{V}}$
Power $=$ torque X angular speed $=$ force X velocity $=\mathrm{Q} \times \Delta \mathrm{p}$; where Q : volumetric flow rate

(a)
(A) no slip:

$$
\begin{aligned}
& v_{r_{A}}=V_{A} \\
& v_{\theta_{A}}=v_{\text {Blatetip }} \\
& v_{Z}=V_{\substack{\text { Diple } \\
\text { tiode } \\
\text { tip }}}=R \Omega
\end{aligned}
$$

(B) $\nu_{r_{B}}=\nu_{\theta_{B}}=\nu_{z_{B}}=0$
(b) Convective acceleration: change in velucity offluid to with spatial distunce

Local: change in velocity w.th time.
(2) Energy Conservation for CH

Inlet: free surface of reservoir $V_{i n}=0, P$ in $=$ Pate
(a)

$$
\begin{aligned}
& \begin{array}{l}
P_{\text {in }}+\frac{1}{2} \rho V_{\text {in }}{ }^{2}+\rho \rho g_{i}=P \cdot r+\frac{1}{2} \rho V_{0}^{2}+\rho g z_{\text {out }}+f g h_{f}-f g h_{p} \\
0=\frac{1}{2} \times 1000 \times 20^{2}+1000 \times 9.8 \times(1.75+0.45)-1000 \times 9.8 \times h_{p}
\end{array} \\
& h_{p}=22.6 \mathrm{~m} \text { punk head } \\
& \Delta_{\text {pump }}=\rho_{g} h_{p}=1000 \times 9.8 \times 2206=221.56 \mathrm{kPa} \\
& P_{\text {oft }}=Q \cdot \Delta P=(V A) \Delta P \quad \text { puny } \\
& =20 \times \frac{\pi}{4} \times\left(12 \times 10^{3}\right)^{2} \times 221.56 \times 10^{3} \\
& =501.2 \text { Watts per pung }
\end{aligned}
$$

(c) Cost $=k W-h * \frac{\phi^{2}}{k W h}=$ time \times Power $\times \frac{\$.8}{k W-h}$

$$
\begin{aligned}
& D_{1}=20 \mathrm{~mm}, D_{2}=1 \mathrm{~mm} \\
& \text { (P1) } V_{1} D_{1}^{2}=V_{2} D_{2}^{2} \Rightarrow V_{2}=V_{1}\left(\frac{D_{1}}{D_{2}}\right)^{2} \\
& \frac{\dot{m}}{\rho}=15 \times 10^{-6} \mathrm{~m}^{3}=V_{1} \frac{\pi}{4} D_{1}^{2}=V_{1} \frac{\pi}{4}\left(20 \times 10^{-3}\right)^{2} \\
& V_{1}=0.0477 \frac{\mathrm{~m}}{\mathrm{~s}} ; V_{2}=400 V_{1}=19.1 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& F=P, A 1-\operatorname{Patm} A_{1}
\end{aligned}
$$

Strumbin* (1)-(2) Bernoulli

$$
\begin{aligned}
& P_{1}+\frac{1}{2} \rho V_{1}^{2}+\rho g z_{1}=P_{2}+\frac{1}{2} \rho V_{2}^{2}+\rho \rho z_{2} \\
& P_{1}+\frac{1}{2} \times 1000 \times\left(4.77 \times 10^{-2}\right)^{2}+1000 \times 9.8 \times 0.05 \\
& =P_{a} t_{m}+\frac{1}{2} \times 1000 \times(19.1)^{2}+0 \\
& P_{1}-P_{\text {atm }}=181.9 \times 10^{3} \mathrm{~Pa} \\
& \begin{aligned}
F=181.9 \times 10^{3} \times \frac{\pi}{4}(0.02)^{2} & =57.1 \mathrm{~N} \\
& \equiv 5.8 \mathrm{~kg} \text { force }
\end{aligned}
\end{aligned}
$$

