
 
 
MECH 314 Introduction to Fluid Mechanics  Quiz 1    April 1, 2009 
90 minutes 

 

Hello people! Please read the questions carefully. As you solve them, indicate clearly your system or CV 
boundaries and any assumptions you might make.  When possible, please state in words what you are 
trying to solve so that we can follow your work and give you credit.  This is especially important if you 
run out of time.  Keep track of time; if you get stuck, move on. At the end of the quiz, return the question 
sheet with the solution booklet.  This is a closed book, closed neighbor quiz. One A4 sheet of your own 
notes is allowed. MOST IMPORTANTLY: relax and have a good time. 

 
 
Problem 1 [50 points] 
 
One day, before his death from lung cancer, the Marlboro Man noticed carbon dioxide bubbles rising up in his 
glass of Pepsi.  He noticed, in particular, that some bubbles travelled faster than others.  Let us analyze this 
situation.   
 
First, assume that the shape of the bubbles is spherical.  We know that a sphere traveling at a velocity u in a fluid 

with density , will experience a drag force, D, opposite to the direction of motion:  D = d
2
u

2
/32g.  Where  = 

fluid density, d = sphere diameter, u = velocity of sphere, g = gravity constant.  
 
Furthermore, we will assume that the bubbles consist of carbon dioxide, with gas constant R, which behaves as an 
ideal gas (PV=mRT).   We will also assume that the temperature in the bubble is constant, that surface tension is 
negligible, and that the mass of gas in the bubble remains constant. 
 

a) (15 pts) Do large or small bubbles travel faster?  Derive an expression for u as a function of ,  g, and d, 
neglecting the inertia and weight of the gas in the bubble. 

b) (15 pts) What happens to the size of a bubble as it travels upward?  Derive an expression for d(x) as a 
function of its position x relative to the glass bottom, given that the initial bubble size was do at x = 0.   

c) (10 pts) Using reasonable numbers for , L, and Patm by what percent will the diameter change as a bubble 
travels from the bottom to the top of the glass? 

d) (10 pts) Taking into account your result for c), derive an expression for the time it takes for a bubble of 
initial diameter do to travel from the bottom to the top of the glass. 
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Grading guidelines for Problem 1 

Part (a) 

 5 points for recognizing that the sum of forces = 0 

 8 points for calculating the buoyancy force 

 2 points for the final answer and your interpretation of it 

Part (b) 

 4 points Poutside bubble = Pinside bubble since surface tension is negligible (given) 

 4 points for correct hydrostatic pressure equation 

 4 points for recognizing PV = const 

 3 points for final answer 

Part (c ) 

 2 points for reasonable L 

 2 points for reasonable rho 

 1 point for reasonable Patm 

 5 points for drawing the correct conclusion based on your calculation 

 

Part (d) (0,5,or 10 points) 

 since d approx constant, u is approx constant 

 then t = L/u 

 final answer correct 
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Quiz 1

Problem 2 [50 points] (a) [20 pts] , (b) [10 pts], (c) [20 pts], bonus: (d) [3 pts], (e) [3 pts]

A bucket of mass mb rests on a scale with a spring constant k and unstressed length y0. A jet
of water of diameter Dj falls toward the bucket at a steady velocity V (relative to the ground).
The cross sectional area of the bucket is A. The density of water is ρ. Initially there is no water
in the bucket. Assume that, except for the rise of water in the bucket, the velocity of water in
the bucket relative to the bucket is zero.
(a) If the spring is rigid (stiffness is infinite), what is the force on the spring Fo(t) (as the bucket
is filling) in terms of given quantities ?

In the following part, the spring has a finite stiffness and obeys the classical linear relashionship
between force and change in length.
(b) Derive an expression for the water level of the bucket h(t) and the mass of water in the
bucket mw(t) as the bucket is moving in terms of y(t) and other given quantities.
(c) Derive an expression for force on the spring in terms of y(t) and other given quantities. [you
are NOT required to solve the differential equation.]
(d) What would the force measured by the spring be if we neglect the dynamics of motion of
the bucket (i.e. neglect time derivatives of y(t)).
(e) Approximate the solution you got in part (b) after a long time has passed and for Aj/A << 1,
where Aj is jet cross sectional area. (assume overflow has not yet occured.)

gV

spring constant ky(t)

bucket of mass mb

jet diameter Dj

h(t)
and area A

jet of water

mw

Figure 1: Schematic for problem 2.
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Problem 1 Solution

(a) Choosing a control volume (See Fig. 2) where the upper control surface rises with water
level.

−ρAj

(
V +

dh

dt

)

mass flow in −ρAj

(
V + dh

dt

)

momentum flow in across jet cross section −ρAj

(
V + dh

dt

)
(−V )

−V

control surface
rising at dh/dt Control Volume 0

increase of momentum inside CV
due to rising level is due to mass
ρAdh rising at a speed of dh/dt

mass ρAdh

Figure 2: Control volumes.

Conservation of mass:

∂

∂t

∫

V
ρ dV +

∫

S
ρur · n̂ dS

The volume of the control volume is Ah(t) and the relative inflow velocity of the jet is −(V +
dh/dt), then

ρA
dh

dt
− ρ

(
V +

dh

dt

)
Aj = 0⇒ dh

dt
= V

Aj

A−Aj

⇒ h =
Aj

A−Aj
V t

Conservation of momentum, in the z direction

∑
Fz =

∂

∂t

∫

V
ρuz dV +

∫

S
ρuz(ur · n̂) dS

The forces are the reaction force of the spring Rs, weight of bucket −mbg, and weight of water in
bucket −ρAhg. As for the transient term, note that except for the rising water, the velocity of
water inside the bucket relative to the bucket is zero. So we divide the control volume into two
parts: first part of volume A(h−dh) with zero velocity, and a second part of volume dV? = Adh
rising at a speed of V ? = dh/dt. Then

∂

∂t

∫

V
ρuz dV = ρV ?dV?

dt
= ρA

(
dh

dt

)2
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Regarding the flux term, the inflow velocity in the chosen reference frame is uz = −V and the
mass flux component is ur · n̂ = −(V + dh/dt), so that the rate of momentum entering the
control volume is ρAjV (V + dh/dt). The momentum equation now looks like

Rs − (mb + ρAh)g = ρA

(
dh

dt

)2

+ ρAjV

(
V +

dh

dt

)

Then

Rs = (mb + αρAV t)g + ρ
α2A2

Aj
V 2

where α = Aj/(A−Aj).

(a1) Work through conservation of mass and momentum by choosing control volume 1 (See Fig.
3) consisting of the bucket and the water in the bucket such that rising water level is inside the
control volume.

(a2) Now we solve part (a) by choosing a control volume 2 (See Fig. 3) consisting of the bucket
and the water in the bucket, with upper control surface fixed. In this case the transient terms
in the conservation of mass and momentum disappear. There are however extra terms due to
the mass and momentum fluxes crossing the upper control surface.

Note that velocity of the flow across the jet cross section of the control surface is −(V + dh/dt);
the jet is going down with V and the water is rising with dh/dt. So for conservation of mass,
there are two mass fluxes, an inflow due to the jet −ρAj

(
V + dh

dt

)
and an outflow through the

upper control surface ρA(dh/dt):

∂

∂t

∫

V
ρ dV +

∫

S
ρur · n̂ dS

⇒ 0− ρAj

(
V +

dh

dt

)
+ ρA

dh

dt
= 0

⇒ dh

dt
= V

Aj

A−Aj

As for the conservation of momentum, the momentum carried by the jet inflow is−ρAj (V + dh/dt) (−V )
and the momentum carried out by the rising water level is ρA(dh/dt)(dh/dt), so that

Rs − (mb + ρAh)g = 0− ρAj

(
V +

dh

dt

)
(−V ) + ρA

(
dh

dt

)2

which is the same result we got in part (a).

(b) Choosing control volume 1 (See Fig. 3) in a frame of reference attached to the bucket

∂

∂t

∫

V
ρ dV +

∫

S
ρur · n̂ dS = 0

The jet velocity relative to the control surface, now moving at speed ẏ, is −ρAj (V + ẏ + dh/dt).
Notice that the way y is shown in the figure, ẏ is already negative since the y(t) decreases as
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Volume A dh

rate of mass decrease due to shortening of jet section inside CV: −ρAj
dh
dt

momentum flow in ρ(−V )(−V Aj)

rate of mass increase due to rising level ρAdh
dt

rate of momentum decrease due to shortening of jet inside CV
(
−ρAj

dh
dt

)
(−V )

dh

dt

momentum flow out
(
ρAdh

dt

)
dh
dt

rate of momentum increase due to rising level
(
ρAdh

dt

)
dh
dt

mass flow out ρAdh
dt

Control Volume 1

Control Volume 2

−ρAj

(
V +

dh

dt

)

mass flow in −ρAj

(
V + dh

dt

)

momentum flow in across jet cross section −ρAj

(
V + dh

dt

)
(−V )

−V

−V

mass flow in −ρAjV

Figure 3: Control volumes.

4



the jet moves downwards. Noting that the upper control surface rises with the water level h(t)
(now defined in the moving reference frame), then conservation of mass yields

ρA
dh

dt
− ρAj

(
V + ẏ +

dh

dt

)
= 0⇒ dh

dt
=

Aj

A−Aj
(V + ẏ)

and the mass of water inside the bucket is given by

dmw

dt
= ρA

dh

dt

⇒ mw = ρA
Aj

A−Aj
(V t+ (y − y0))

where y0 = y(t = 0).

(c) Applying conservation of momentum in a frame of reference (which is a non-inertial frame
of reference) moving with the bucket. Choosing control volume 0 (See Fig. 2) and taking only
the vertical component of the momentum equation,

∑
Fy − (mb +mw)

d2y

dt2
=

∂

∂t

∫

V
ρuz dV +

∫

S
ρuz(ur · n̂) dS

We note the following

• Note that the forces in the vertical direction are the weight −(mb +mw)g and the spring
force k(y0 − y).

• The transient term is due to mass ρAdh rising at speed dh/dt in the moving reference
frame.

• The rate of momentum crossing the control surface is due to jet is−ρAj

(
V + ẏ + dh

dt

)
[−(V+

ẏ)], where −(V + ẏ) is the flow velocity in the moving reference frame.

The conservation of momentum becomes

k(y0 − y) = (mb + αρA(V t+ (y − y0))) (ÿ + g) + ρ
A2α2

Aj
(V + ẏ)2

(d) If we neglect the time variation of y, the equation is

k(y0 − y) = (mb + ρAj(V t+ (y − y0))) g + ρ
A2α2

Aj
V 2

(e) For long times V t >> y0 − y, ρAjV t >> mb, and for Aj/A << 1, we get

k(y0 − y) = ρAjV t(ÿ + g) + ρAj(V + ẏ)2
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