Physics 205L Final exam

January 17, 2008

Name:_____

Section number:_____

Instructor's Name:_____

ID number:_____

DO NOT START THE EXAM BEFORE YOU ARE TOLD TO BEGIN

Grading

Ι	
II-1	
II-2	
II-3	
TOTAL	

The duration of this exam is <u>60 minutes</u>.

No notes or books allowed.

Scientific calculators are allowed

All results should be given with the exact number of significant figures.

I. (55%) The dielectric constant k of the material that fills the space between the two conductors of a coaxial cable is to be determined. Cables of different outer diameters b were used and the capacitance of each was measured. All cables have an inner diameter of a = 0.037 cm and a length L = 1 + 0.001 m. The permittivity of free space is $\varepsilon_0 = 8.85 \times 10^{-12} C^2 / Nm^2$ The results below were obtained:

<i>b</i> [cm]	<i>C</i> (pF)		
0.110	102.10		
0.231	60.72		
0.320	51.55		
0.415	46.01		
0.517	42.17		

You may find the formulae on page 5 useful.

a- Write down the necessary relation between *C* and *b*.

b- Choose your variables *x* and *y* such that you obtain a linear relationship between them.

c- Use linear regression to find the slope of the line along with its error.

d- Determine the dielectric constant *k* along with its error.

Linear Regression

The *method of least squares* is used to fit a curve (find a theoretical equation) to a set of experimental data. First assume that a linear relation exists between y and x

$$y = Ax + B \tag{1}$$

Substitution of $x = x_i$ will in general not give the value of y_i . The "errors" will be

$$e_{i} = y - y_{i} = Ax_{i} + B - y_{i}$$
 (2)

To determine the best straight line that fits the N, sets of data, A and B have to be chosen so that the sum of the squares of the "errors" is minimized. This means that the simultaneous equations, obtained by equating the partial derivatives of $(y - y_i)^2$ with respect to A and B to zero, should be solved. This condition leads then to the following results

$$A = \frac{N\sum(x_i y_i) - \sum x_i \sum y_i}{\Delta}$$
(3)

and

$$B = \frac{\sum x_i^2 \sum y_i - \sum x_i \sum (x_i y_i)}{\Delta}$$
(4)

where

$$\Delta = N \sum x_i^2 - \left(\sum x_i\right)^2 \tag{5}$$

The correlation coefficient r provides an indicator of how good a fit the best straight line is. This coefficient is defined as

$$r = \frac{\sum (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum (x_{i} - \bar{x})^{2} \sum (y_{i} - \bar{y})^{2}}}$$
(6)

For r = 0, the values of x and y are independent of one another and there is no linear correlation. The closer r is to +1 or to -1, the better the linear correlation is. Finally, the error in A is given by:

$$\sigma_A^2 = \frac{N}{N-2} \frac{\sum e_i^2}{\Delta}$$

II. <u>Questions</u>

1. In the "Planck's Constant Experiment" (15%) a- We used the equation $V_s = (\frac{h}{e})f - \frac{\phi}{e}$ in order to determine h and ϕ . Explain how.(10%)

b- Define the photoelectric effect. (5%)

2. In the e/m experiment, why did we tilt the Helmholtz coils and kept them at that orientation throughout the experiment? (10%)

3. In "Ohm's Law" experiment, explain how the resistivity of metal rods were determined. Include necessary equations. (**20%**)