1866 AUB American University of Boirut	Student Name : SOLUTION Student I.D. :
American University of Beirut	Student I.D. :

American University of Beirut

Faculty of Arts and Sciences

Course Name	: Introductory Physics I	Course Code	: PHYS 101
Exam	: Quiz-1	Sections	: All
Date	: March 6, 2015	Time	: 17:00 – 18:00
Semester	: Spring	Year	: 2014 - 2015
Instructor	: Dr. Hani Hamzeh	Exam Weight	: 20%

Instructions

- Time allowed: 60 minutes
- Take $g = 9.80 \text{ m/s}^2$
- Cheating in any way will result in an **F** grade
- Read each question carefully before answering
- Answer questions that you are confident about first.
- This exam consists of **7 pages** including this page
- Only standard (not programmable) calculators are allowed
- No documents are allowed
- Borrowing any instrument is forbidden

Problem #	Grade
Problem 1	/15
Problem 2	/5
Problem 3	/10
Problem 4	/10
Problem 5	/10
Problem 6	/10
Total	/100

Problem-1 (15 points) (~ 15 min)

A ball is thrown horizontally with a speed v_0 from a height of 10 m. It reaches the ground with an angle of 37° below the horizontal as shown in the figure. Neglect air resistance.

- (a) Find the initial speed v_0 of the ball.
- (**b**) How long does it take the ball to reach the ground?

a)
$$v_{f_x} = v_f \cos 37 = v_{o_x} = v_o \Rightarrow v_f = v_o / \cos 37$$

 $v_{f_x} = -v_f \sin 37 = -v_o \tan 37$

constant acceleration, projectile motion \Rightarrow

$$v_{f_x}^2 = v_{i_x}^2 + 2a_y \Delta y = 0 + 2(-9.80)(-10) = 196 \implies v_{f_x} = -14 \text{ m/s}$$

V _o	$=\frac{-v_{f_y}}{\tan 37}=\frac{14}{\tan 37}=18.6 \text{ m/s}$	
b)	$t = \frac{v_{f_y} - v_{i_y}}{a} = \frac{-14 - 0}{-9.80} = 1.43$	s

If the ball were thrown instead with an initial velocity of 9 m/s at an angle of 30° above the horizontal, from the same initial height:

- (c) What would then be the maximum height reached by the ball with respect to the ground?
- (d) How far from the initial horizontal position would it reach the ground?

c)
$$v_{i_y} = v_i \sin 30 = 9 \sin 30 = 4.5 \text{ m/s}$$

 $v_{f_y}^2 = v_{i_y}^2 + 2a_y \Delta y \Rightarrow \Delta y = y_{max} - y_i = \frac{v_{f_y}^2 - v_{i_y}^2}{2a_y} = \frac{0 - 4.5^2}{2(-9.80)} = 1.03 \text{ m} \Rightarrow \boxed{y_{max} = 11.03 \text{ m}}$
d) $\Delta y = v_{i_y} t - \frac{1}{2} g t^2$ the total time of the flight can be found:
 $-10 = 4.5t - 4.9t^2 \Rightarrow 4.9t^2 - 4.5t - 10 = 0 \Rightarrow t = 1.96 \text{ s}$ (only the positive solution is possible)
 $\Delta x = v_{i_x} t = (v_i \cos 30)t = (9\cos 30)1.96 = 15.3 \text{ m}}$

PHYS 101	Quiz-1	Spring 2014-2015

Problem-2 (5 points) (~ 5 min)

Two blocks of masses $m_1 = 3$ kg and $m_2 = 5$ kg are connected by a string of negligible mass that passes over a frictionless mass-less pulley. Block m_1 moves on a horizontal frictionless surface, while block m_2 moves on a frictionless inclined plane making an angle $\theta = 30^\circ$ with the horizontal.

- (a) Draw a free body diagram for each block.
- (**b**) Find the tension in the string.

Newton's second law on block $m_1: \overrightarrow{T_1} + m_1 \overrightarrow{g} + \overrightarrow{n_1} = m_1 \overrightarrow{a_1}$

Newton's second law on block $m_2: \overrightarrow{T_2} + m_2 \overrightarrow{g} + \overrightarrow{n_2} = m_2 \overrightarrow{a_2}$

Since the two blocks are connected by a taut string and the pulley is frictionless and mass-less $\Rightarrow a_1 = a_2$ since the string is also of negligible mass $\Rightarrow T_1 = T_2$

Considering the system comprised of the two blocks and the string connecting them and

using the "system approach" we first find a

Newton's second law for the system is $m_1\vec{g} + m_2\vec{g} + \vec{n_1} + \vec{n_2} = (m_1 + m_2)\vec{a}$

If we take the projection along the direction of motion, with rightward as the positive direction:

$$m_2 g \sin 30 = (m_1 + m_2)a \Rightarrow a = \frac{m_2 g \sin 30}{(m_1 + m_2)} = \frac{5 \times 9.80 \times \sin 30}{8} = 3.06 \text{ m/s}^2$$

If we isolate the block of mass m_1 and project Newton's second law along the horizontal direction:

$$T = m_1 a = 3 \times 3.06$$

Problem-3 (10 points) (~ 10 min)

A 4 kg block is pushed upward over a 37° rough incline by a constant horizontal force of 100 N (see figure). The block moves up the incline with a constant acceleration $a = 3 \text{ m/s}^2$. Find the magnitude of the coefficient of kinetic friction between the incline and the object ($\mu_k = ?$).

Newton's second law

$$\sum \vec{F} = \vec{F} + \vec{n} + m\vec{g} + \vec{f_k} = m\vec{a}$$

Projection along *x* (*x* axis taken parallel to the incline and positive upwards)

 $F \cos 37 + 0 - mg \sin 37 - f_k = ma \ (1)$ and $f_k = \mu_k n$ Projection along y $-F \sin 37 + n - mg \cos 37 + 0 = 0 \Rightarrow n = F \sin 37 + mg \cos 37 = 91.5 \text{ N}$ $\Rightarrow f_k = \mu_k (F \sin 37 + mg \cos 37)$ if we replace in equation (1) $F \cos 37 - mg \sin 37 - \mu_k (F \sin 37 + mg \cos 37) = ma$ $\Rightarrow \mu_k = \frac{F \cos 37 - mg \sin 37 - ma}{F \sin 37 + mg \cos 37} = 0.48$ **Problem-4** (10 points) (~ 10 min)

An object of weight 80 N is on an inclined plane that makes an angle $\theta = 20^{\circ}$ with the horizontal. An upward force \vec{F} is applied on the object parallel to the inclined plane (see figure). The coefficient of static friction between the object and the inclined plane is $\mu_s = 0.25$.

- (a) If the object is not moving and if the force of static friction f_s is not equal to its maximum value, find an expression for f_s .
- (b) Calculate the minimum magnitude of the applied force \vec{F} that will start the object to move up the incline.

a) Newton along the incline:

 $F - f_s - mg\sin\theta = 0$

$$f_s = F - mg\sin\theta$$

b) the minimum magnitude of the force F that will start the object moving up the incline is the one which causes the static friction force to reach its maximum value $f_{s,max} = \mu_s n$

$$F_{\min} - mg\sin\theta = f_{s,\max} = \mu_s n$$

Newton along the perpendicular to the incline:

 $n - mg \cos \theta = 0 \Rightarrow n = mg \cos \theta$ and we replace this value in the equation giving us F_{\min}

 $\Rightarrow F_{\min} = \mu_s mg \cos \theta + mg \sin \theta = 0.25 \times 80 \times \cos 20^\circ + 80 \times \sin 20^\circ = 46.16 \text{ N}$

Problem-5 (10 points) (~ 10 min)

A roller-coaster car has a mass of 500 kg when fully loaded with passengers. Assume the roller-coaster tracks at points A and B are parts of vertical circles of radius $r_1 = 10.0$ m and $r_2 = 15.0$ m, respectively.

- (a) If the vehicle has a speed of 20.0 m/s at point A, what is the force exerted by the track on the car at this point?
- (b) What is the maximum speed the vehicle can have at point B and still remain on the track?

a) We apply Newton's second law at point A, with v = 20.0 m/s,

n = force of track on roller coaster, and R = 10.0 m:

$$\sum F = \frac{Mv^2}{R} = n - Mg$$

From this we find

$$n = Mg + \frac{Mv^2}{R} = 2.49 \times 10^4 \,\mathrm{N}$$

b) At point B, the centripetal acceleration is now downard and Newton's second law now gives

$$\sum F = n - Mg = -\frac{Mv^2}{R}$$

The maximum speed at B corresponds to the case where the rollercoaster begins to fly off the track, or when n = 0. Then,

$$-Mg = -\frac{Mv_{\text{max}}^2}{R} \implies v_{\text{max}} = \sqrt{Rg} = 12.1 \text{ m/s}$$

Problem-6 (10 points) (~ 10 min)

- A skydiver of mass 80.0 kg jumps from a slow-moving aircraft and reaches a terminal speed of 50.0 m/s.
 - (a) What is her acceleration when her speed is 30.0 m/s?
 - (\mathbf{b}) What is the drag force on the skydiver when her speed is
 - i. 50.0 m/s?
 - ii. 30.0 m/s?

Given m = 80.0 kg, $v_T = 50.0$ m/s, we can write

If we apply Newton's second law along the vertical direction to the skydiver we have:

$$D - mg = -ma \Longrightarrow \frac{1}{2}C\rho Av^2 - mg = -ma$$

When the skydiver reaches her terminal speed, a = 0

$$\Rightarrow mg = \frac{C\rho A v_T^2}{2} \Rightarrow \frac{C\rho A}{2} = \frac{mg}{v_T^2} = 0.314 \text{ kg/m}$$

a) At $v = 30.0 \text{ m/s}$
 $a = g - \frac{C\rho A v^2 / 2}{m} = 9.80 \text{ m/s}^2 - \frac{(0.314 \text{ kg/m})(30.0 \text{ m/s})^2}{80.0 \text{ kg}} = 6.27 \text{ m/s}^2 \text{ downward}$
b) i) At $v = 50.0 \text{ m/s}$, terminal velocity has been reached
 $\sum F_y = 0 = mg - D \Rightarrow D = mg = (80.0 \text{ kg})(9.80 \text{ m/s}^2 = 785 \text{ N directed upward}$
ii) At $v = 30.0 \text{ m/s}$
 $\frac{C\rho A v^2}{2} = (0.314 \text{ kg/m})(30.0 \text{ m/s})^2 = 283 \text{ N directed upward}$