Student Name: SOLUTION \qquad

Student I.D. : \qquad

American University of Beirut

Faculty of Arts and Sciences

Course Name	: Introductory Physics I	Course Code	: PHYS 101
Exam	: Quiz-1	Sections	: All
Date	: March 6, 2015	Time	$: 17: 00-18: 00$
Semester	: Spring	Year	$: 2014-2015$
Instructor	: Dr. Hani Hamzeh	Exam Weight	$: 20 \%$

Instructions

- Time allowed: 60 minutes
- Take $\boldsymbol{g}=\mathbf{9 . 8 0} \mathbf{m} / \mathbf{s}^{2}$
- Cheating in any way will result in an F grade
- Read each question carefully before answering
- Answer questions that you are confident about first.
- This exam consists of 7 pages including this page
- Only standard (not programmable) calculators are allowed
- No documents are allowed
- Borrowing any instrument is forbidden

Problem \#	Grade
Problem 1	
Problem 2	$/ 15$
Problem 3	$/ 10$
Problem 4	$/ 10$
Problem 5	$/ 10$
Problem 6	$/ 10$
Total	$/ 100$

Problem-1 (15 points) (~ 15 min)
A ball is thrown horizontally with a speed v_{0} from a height of 10 m . It reaches the ground with an angle of 37° below the horizontal as shown in the figure. Neglect air resistance.
(a) Find the initial speed v_{0} of the ball.
(b) How long does it take the ball to reach the ground?
a) $v_{f_{x}}=v_{f} \cos 37=v_{o_{x}}=v_{o} \Rightarrow v_{f}=v_{o} / \cos 37$
$v_{f_{v}}=-v_{f} \sin 37=-v_{o} \tan 37$
constant acceleration, projectile motion \Rightarrow

$v_{f_{y}}^{2}=v_{i_{y}}^{2}+2 a_{y} \Delta y=0+2(-9.80)(-10)=196 \Rightarrow v_{f_{y}}=-14 \mathrm{~m} / \mathrm{s}$
$v_{o}=\frac{-v_{f_{y}}}{\tan 37}=\frac{14}{\tan 37}=18.6 \mathrm{~m} / \mathrm{s}$
b) $t=\frac{v_{f_{y}}-v_{i_{y}}}{a}=\frac{-14-0}{-9.80}=1.43 \mathrm{~s}$

If the ball were thrown instead with an initial velocity of $9 \mathrm{~m} / \mathrm{s}$ at an angle of 30° above the horizontal, from the same initial height:
(c) What would then be the maximum height reached by the ball with respect to the ground?
(d) How far from the initial horizontal position would it reach the ground?
c) $v_{i_{y}}=v_{i} \sin 30=9 \sin 30=4.5 \mathrm{~m} / \mathrm{s}$
$v_{f_{y}}^{2}=v_{i_{y}}^{2}+2 a_{y} \Delta y \Rightarrow \Delta y=y_{\max }-y_{i}=\frac{v_{f_{y}}^{2}-v_{i_{y}}^{2}}{2 a_{y}}=\frac{0-4.5^{2}}{2(-9.80)}=1.03 \mathrm{~m} \Rightarrow \mathrm{y}_{\max }=11.03 \mathrm{~m}$
d) $\Delta y=v_{i_{y}} t-\frac{1}{2} g t^{2}$ the total time of the flight can be found:
$-10=4.5 t-4.9 t^{2} \Rightarrow 4.9 t^{2}-4.5 t-10=0 \Rightarrow t=1.96 \mathrm{~s}$ (only the positive solution is possible)

$$
\Delta x=v_{i_{x}} t=\left(v_{i} \cos 30\right) t=(9 \cos 30) 1.96=15.3 \mathrm{~m}
$$

Problem-2 (5 points) ($\sim 5 \mathrm{~min}$)
Two blocks of masses $m_{1}=3 \mathrm{~kg}$ and $m_{2}=5 \mathrm{~kg}$ are connected by a string of negligible mass that passes over a frictionless mass-less pulley. Block m_{1} moves on a horizontal frictionless surface, while block m_{2} moves on a frictionless inclined plane making an angle $\theta=30^{\circ}$ with the horizontal.
(a) Draw a free body diagram for each block.
(b) Find the tension in the string.

Newton's second law on block $m_{1}: \vec{T}_{1}+m_{1} \vec{g}+\vec{n}_{1}=m_{1} \overrightarrow{a_{1}}$
Newton's second law on block $m_{2}: \overrightarrow{T_{2}}+m_{2} \vec{g}+\overrightarrow{n_{2}}=m_{2} \overrightarrow{a_{2}}$
Since the two blocks are connected by a taut string and the pulley is frictionless and mass-less $\Rightarrow a_{1}=a_{2}$ since the string is also of negligible mass $\Rightarrow T_{1}=T_{2}$
Considering the system comprised of the two blocks and the string connecting them and using the "system approach" we first find a
Newton's second law for the system is $m_{1} \vec{g}+m_{2} \vec{g}+\overrightarrow{n_{1}}+\overrightarrow{n_{2}}=\left(m_{1}+m_{2}\right) \vec{a}$
If we take the projection along the direction of motion, with rightward as the positive direction:
$m_{2} g \sin 30=\left(m_{1}+m_{2}\right) a \Rightarrow a=\frac{m_{2} g \sin 30}{\left(m_{1}+m_{2}\right)}=\frac{5 \times 9.80 \times \sin 30}{8}=3.06 \mathrm{~m} / \mathrm{s}^{2}$
If we isolate the block of mass m_{1} and project Newton's second law along the horizontal direction:
$T=m_{1} a=3 \times 3.06$

Problem-3 (10 points) (~ 10 min)
A 4 kg block is pushed upward over a 37° rough incline by a constant horizontal force of 100 N (see figure). The block moves up the incline with a constant acceleration $\mathrm{a}=3 \mathrm{~m} / \mathrm{s}^{2}$. Find the magnitude of the coefficient of kinetic friction between the incline and the object ($\mu_{k}=$?).

Newton's second law
$\sum \overrightarrow{\mathrm{F}}=\vec{F}+\vec{n}+m \vec{g}+\overrightarrow{f_{k}}=m \vec{a}$
Projection along x (x axis taken parallel to the incline and positive upwards)
$F \cos 37+0-m g \sin 37-f_{k}=m a$ (1)
and $f_{k}=\mu_{k} n$
Projection along y
$-F \sin 37+n-m g \cos 37+0=0 \Rightarrow n=F \sin 37+m g \cos 37=91.5 \mathrm{~N}$
$\Rightarrow f_{k}=\mu_{k}(F \sin 37+m g \cos 37)$
if we replace in equation (1)
$F \cos 37-m g \sin 37-\mu_{k}(F \sin 37+m g \cos 37)=m a$
$\Rightarrow \mu_{k}=\frac{F \cos 37-m g \sin 37-m a}{F \sin 37+m g \cos 37}=0.48$

Problem-4 (10 points) ($\sim 10 \mathrm{~min}$)
An object of weight 80 N is on an inclined plane that makes an angle $\theta=20^{\circ}$ with the horizontal. An upward force \vec{F} is applied on the object parallel to the inclined plane (see figure). The coefficient of static friction between the object and the inclined plane is $\mu_{\mathrm{s}}=0.25$.
(a) If the object is not moving and if the force of static friction f_{s} is not equal to its maximum value, find an expression for f_{s}.
(b) Calculate the minimum magnitude of the applied force \vec{F} that will start the object to move up the incline.

a) Newton along the incline:
$F-f_{s}-m g \sin \theta=0$
$f_{s}=F-m g \sin \theta$
b) the minimum magnitude of the force F that will start the object moving up the incline is the one which causes the static friction force to reach its maximum value $f_{s, \max }=\mu_{s} n$
$F_{\text {min }}-m g \sin \theta=f_{s, \text { max }}=\mu_{s} n$
Newton along the perpendicular to the incline:
$n-m g \cos \theta=0 \Rightarrow n=m g \cos \theta$ and we replace this value in the equation giving us $F_{\text {min }}$
$\Rightarrow F_{\min }=\mu_{s} m g \cos \theta+m g \sin \theta=0.25 \times 80 \times \cos 20^{\circ}+80 \times \sin 20^{\circ}=46.16 \mathrm{~N}$

Problem-5 (10 points) ($\sim 10 \mathrm{~min}$)
A roller-coaster car has a mass of 500 kg when fully loaded with passengers. Assume the roller-coaster tracks at points A and B are parts of vertical circles of radius $r_{1}=10.0 \mathrm{~m}$ and $r_{2}=15.0 \mathrm{~m}$, respectively.
(a) If the vehicle has a speed of $20.0 \mathrm{~m} / \mathrm{s}$ at point A , what is the force exerted by the track on the car at this point?
(b) What is the maximum speed the vehicle can have at point B and still remain on the track?
a) We apply Newton's second law at point A, with $v=20.0 \mathrm{~m} / \mathrm{s}$,
$n=$ force of track on roller coaster, and $R=10.0 \mathrm{~m}$:
$\sum F=\frac{M v^{2}}{R}=n-M g$
From this we find
$n=M g+\frac{M v^{2}}{R}=2.49 \times 10^{4} \mathrm{~N}$
b) At point B, the centripetal acceleration is now downard and Newton's second law now gives
$\sum F=n-M g=-\frac{M v^{2}}{R}$
The maximum speed at B corresponds to the case where the rollercoaster begins to fly off the track, or when $n=0$. Then,
$-M g=-\frac{M v_{\text {max }}^{2}}{R} \Rightarrow v_{\text {max }}=\sqrt{R g}=12.1 \mathrm{~m} / \mathrm{s}$

Problem-6 (10 points) ($\sim 10 \mathrm{~min}$)
A skydiver of mass 80.0 kg jumps from a slow-moving aircraft and reaches a terminal speed of $50.0 \mathrm{~m} / \mathrm{s}$.
(a) What is her acceleration when her speed is $30.0 \mathrm{~m} / \mathrm{s}$?
(b) What is the drag force on the skydiver when her speed is
i. $\quad 50.0 \mathrm{~m} / \mathrm{s}$?
ii. $\quad 30.0 \mathrm{~m} / \mathrm{s}$?

Given $m=80.0 \mathrm{~kg}, v_{T}=50.0 \mathrm{~m} / \mathrm{s}$, we can write
If we apply Newton's second law along the vertical direction to the skydiver we have:
$D-m g=-m a \Rightarrow \frac{1}{2} C \rho A v^{2}-m g=-m a$
When the skydiver reaches her terminal speed, $a=0$
$\Rightarrow m g=\frac{C \rho \mathrm{~A} v_{T}^{2}}{2} \Rightarrow \frac{C \rho A}{2}=\frac{m g}{v_{T}^{2}}=0.314 \mathrm{~kg} / \mathrm{m}$
a) At $v=30.0 \mathrm{~m} / \mathrm{s}$
$a=g-\frac{C \rho A v^{2} / 2}{m}=9.80 \mathrm{~m} / \mathrm{s}^{2}-\frac{(0.314 \mathrm{~kg} / \mathrm{m})(30.0 \mathrm{~m} / \mathrm{s})^{2}}{80.0 \mathrm{~kg}}=6.27 \mathrm{~m} / \mathrm{s}^{2}$ downward
b) i) At $v=50.0 \mathrm{~m} / \mathrm{s}$, terminal velocity has been reached
$\sum F_{y}=0=m g-D \Rightarrow D=m g=(80.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}=785 \mathrm{~N}\right.$ directed upward
ii) At $v=30.0 \mathrm{~m} / \mathrm{s}$
$\frac{C \rho A v^{2}}{2}=(0.314 \mathrm{~kg} / \mathrm{m})(30.0 \mathrm{~m} / \mathrm{s})^{2}=283 \mathrm{~N}$ directed upward

