American University of Beirut Final – Fall 2007-2008 Math 219

I - Let T:
$$\mathbb{R}^3 \to \mathbb{R}^3$$
 defined by $T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_1 + 2x_2 - x_3 \\ -x_2 \\ x_1 + 7x_3 \end{bmatrix}$.

a- Show that T is a linear transformation.

b- Write T as a matrix with respect to the standard basis of \mathbb{R}^3 .

c- Find a basis for the kernel and image of T.

II- Let U: $R^3 \rightarrow R^2$ and T: $R^3 \rightarrow R^3$ be the linear transformation given by the matrices

(_3	2	_1)	$\begin{pmatrix} 2 \end{pmatrix}$	1	0	
representations: $U = \begin{pmatrix} -3 \\ -3 \end{pmatrix}$	-2^{2}	$\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and T =	= 0	1	1	
		-1)	$\left(-\epsilon\right)$	50	3	J

- a- Find the matrix of UoT. b- Show that $\begin{pmatrix} 2\\0\\-6 \end{pmatrix} \in \text{Im ageT} \cap \text{KerU}$
- III- Let P_2 be the vector space of all polynomials of degree less or equal than two and $T: P_2 \rightarrow P_2$ be the linear transformation defined by:

$$T(p(x)) = T(a_0 + a_1x + a_2x^2) = (5a_0 + 6a_1 + 2a_2) - (a_1 + 8a_2)x + (a_0 - 2a_2)x^2$$

- a- Find the eigenvalues of T with respect to the standard basis of P_2 .
- b- Find bases for the eigenspaces of T.

IV- Let u and v be in \mathbb{R}^3 . Define $< u, v >= u_1 v_1 + 2u_2 v_2 + 3u_3 v_3$.

- a- Show that $\langle u, v \rangle = u_1 v_1 + 2u_2 v_2 + 3u_3 v_3$ is an inner product
- b- Use the Gram-Schmidt process to transform u = (1,0,0), v = (1,1,0)and w = (1,1,1) into an orthonormal basis.

V- Define $u_1, u_2 \in \mathbb{R}^2$ such that $u_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} u_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

a- Show that \mathbf{u}_1 , \mathbf{u}_2 span \mathbf{R}^2 .

b- Let B = { e_1 , e_2 } be the standard basis for R². Write e_1 , e_2 as a linear combination

of
$$\mathbf{u}_1, \mathbf{u}_2$$
.
c- Let T: $\mathbb{R}^2 \to \mathbb{R}^3$ with $\mathbf{T}_{\mathbf{B}}$ its matrix representation. And let
 $T_{\mathbf{B}}(\mathbf{u}_1) = \begin{pmatrix} 2\\1\\9 \end{pmatrix}$ and $T_{\mathbf{B}}(\mathbf{u}_2) = \begin{pmatrix} 3\\2\\5 \end{pmatrix}$. Determine $\mathbf{T}_{\mathbf{B}}$.

VI- True or False. If it is True explain fully. If it is false give a counter-example.

- a- If A is a 3x4 matrix then the system Ax = 0 has at least one independent variable.
- b- T: $V \rightarrow W$ is a linear transformation. Let $v_1, v_2...v_n \in V$, then if $T(v_1), T(v_2)...T(v_n)$ are linearly independent then $v_1, v_2...v_n$ are linearly independent.

VII- Prove the following independent statements:

- a- An nxn matrix is said to be idempotent if $A^2 = A$. Show that if λ is an eigenvalue of an idempotent matrix then $\lambda = 0$ or $\lambda = 1$.
- b- Let \mathbf{P}_3 be the vector space of all polynomials of degree less or equal than three. For any polynomial p(x) we define p'(x) to be the derivative of p(x). Let $g(x) = 1 + x - x^2 + 4x^3$. Show that $C = \{g(x), g'(x), g''(x), g'''(x)\}$ is a basis for \mathbf{P}_3 .
- c- Let A be a diagonalizable matrix whose eigenvalues are all 1 or -1. Show that A is invertible and that $A^2 = I$.
- d- Let B be an n x n invertible matrix. Prove that

$$T: M_{n \times n} \to M_{n \times n}$$

A $\to T(A) = AB$

is an isomorphism.