American University of Beirut
 Final - Fall 2007-2008
 Math 219

I - Let $T: R^{3} \rightarrow R^{3}$ defined by $T\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}+2 x_{2}-x_{3} \\ -x_{2} \\ x_{1}+7 x_{3}\end{array}\right]$.
a- Show that T is a linear transformation.
$b-$ Write T as a matrix with respect to the standard basis of R^{3}.
c- Find a basis for the kernel and image of T.

II- Let $\mathrm{U}: \mathrm{R}^{3} \rightarrow \mathrm{R}^{2}$ and $\mathrm{T}: \mathrm{R}^{3} \rightarrow \mathrm{R}^{3}$ be the linear transformation given by the matrices representations: $U=\left(\begin{array}{ccc}-3 & 2 & -1 \\ -3 & -2 & -1\end{array}\right)$ and $T=\left(\begin{array}{ccc}2 & 1 & 0 \\ 0 & 1 & 1 \\ -6 & 0 & 3\end{array}\right)$.
a- Find the matrix of UoT.
b- Show that $\left(\begin{array}{c}2 \\ 0 \\ -6\end{array}\right) \in \operatorname{Im}$ age $T \cap \operatorname{KerU}$

III- Let \mathbf{P}_{2} be the vector space of all polynomials of degree less or equal than two and $\mathrm{T}: \mathrm{P}_{2} \rightarrow \mathrm{P}_{2}$ be the linear transformation defined by:

$$
\mathrm{T}(\mathrm{p}(\mathrm{x}))=\mathrm{T}\left(\mathrm{a}_{0}+\mathrm{a}_{1} \mathrm{x}+\mathrm{a}_{2} \mathrm{x}^{2}\right)=\left(5 \mathrm{a}_{0}+6 \mathrm{a}_{1}+2 \mathrm{a}_{2}\right)-\left(\mathrm{a}_{1}+8 \mathrm{a}_{2}\right) \mathrm{x}+\left(\mathrm{a}_{0}-2 \mathrm{a}_{2}\right) \mathrm{x}^{2}
$$

a- Find the eigenvalues of T with respect to the standard basis of \mathbf{P}_{2}.
b- Find bases for the eigenspaces of T.

IV- Let u and v be in R^{3}. Define $\langle u, v\rangle=u_{1} v_{1}+2 u_{2} v_{2}+3 u_{3} v_{3}$.
a- Show that $\langle u, v\rangle=u_{1} v_{1}+2 u_{2} v_{2}+3 u_{3} v_{3}$ is an inner product
b- Use the Gram-Schmidt process to transform $u=(1,0,0), v=(1,1,0)$ and $w=(1,1,1)$ into an orthonormal basis.

V - Define $\mathrm{u}_{1}, \mathrm{u}_{2} \in \mathrm{R}^{2}$ such that $\mathrm{u}_{1}=\binom{1}{1}, \mathrm{u}_{2}=\binom{1}{2}$.
a- Show that $\mathbf{u}_{1}, \mathbf{u}_{2}$ span R^{2}.
b - Let $B=\left\{e_{1}, e_{2}\right\}$ be the standard basis for R^{2}. Write e_{1}, e_{2} as a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}$.
c- Let $T: R^{2} \rightarrow R^{3}$ with T_{B} its matrix representation. And let

$$
\mathrm{T}_{\mathrm{B}}\left(\mathrm{u}_{1}\right)=\left(\begin{array}{l}
2 \\
1 \\
9
\end{array}\right) \text { and } \mathrm{T}_{\mathrm{B}}\left(\mathrm{u}_{2}\right)=\left(\begin{array}{l}
3 \\
2 \\
5
\end{array}\right) \text {. Determine } \mathrm{T}_{\mathrm{B}} .
$$

VI- True or False. If it is True explain fully. If it is false give a counter-example.
a- If A is a 3 x 4 matrix then the system $\mathrm{Ax}=0$ has at least one independent variable.
$\mathrm{b}-\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ is a linear transformation. Let $\mathrm{v}_{1}, \mathrm{v}_{2} \ldots \mathrm{v}_{\mathrm{n}} \in \mathrm{V}$, then if $\mathrm{T}\left(\mathrm{v}_{1}\right), \mathrm{T}\left(\mathrm{v}_{2}\right) \ldots \mathrm{T}\left(\mathrm{v}_{\mathrm{n}}\right)$ are linearly independent then $\mathrm{v}_{1}, \mathrm{v}_{2} \ldots \mathrm{v}_{\mathrm{n}}$ are linearly independent.
c-

VII- Prove the following independent statements:
a- An nxn matrix is said to be idempotent if $\mathrm{A}^{2}=\mathrm{A}$. Show that if $\boldsymbol{\lambda}$ is an eigenvalue of an idempotent matrix then $\boldsymbol{\lambda}=0$ or $\boldsymbol{\lambda}=1$.
b- Let \mathbf{P}_{3} be the vector space of all polynomials of degree less or equal than three. For any polynomial $p(x)$ we define $p^{\prime}(x)$ to be the derivative of $p(x)$. Let $g(x)=1+x-x^{2}+4 x^{3}$. Show that $C=\left\{g(x), g^{\prime}(x), g^{\prime \prime}(x), g^{\prime \prime \prime}(x)\right\}$ is a basis for P_{3}.
c- Let A be a diagonalizable matrix whose eigenvalues are all 1 or -1 . Show that A is invertible and that $A^{2}=I$.
d- Let B be an nx n invertible matrix. Prove that

$$
\begin{aligned}
\mathrm{T}: \mathrm{M}_{\mathrm{n} \times \mathrm{n}} & \rightarrow \mathrm{M}_{\mathrm{n} \times \mathrm{n}} \\
\mathrm{~A} & \rightarrow \mathrm{~T}(\mathrm{~A})=\mathrm{AB}
\end{aligned}
$$

is an isomorphism.

