· Profesor K. Khur-Makdis;

Math 219, sections 3 and 4 — Fall 2001-42002

(from Fall 2000-01) Last year's final exam

- 1. a) Let V be a vector space over \mathbf{R} . Define the notion of an inner product on V.
 - b) State and prove the Cauchy-Schwartz inequality (only for vector spaces over R!).
- 2. Let $T: \mathbf{R}^4 \to \mathbf{R}^3$ be given by the matrix $\begin{pmatrix} 1 & 2 & 1 & 3 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 3 \end{pmatrix}$.
 - a) Find a basis for each of $\ker T$ and $\operatorname{Image} T$.
 - b) Find the orthogonal projection of the vector (3,0,0) onto Image T.
- Define $T: \mathbb{C}^2 \to \mathbb{C}^2$ by the matrix $\begin{pmatrix} 3 & -2 \\ 1 & 1 \end{pmatrix}$. Find a basis of \mathbb{C}^2 consisting of eigenvectors for T.
- 4. Define $T: \mathcal{P}_3 \to \mathbf{R}^4$ by $T(f) = \begin{pmatrix} f(1) \\ f'(1) \\ f(-1) \\ f'(-1) \end{pmatrix}$.
 - a) Find the matrix $_{\mathcal{A}}[T]_{\mathcal{B}}$, where \mathcal{A} is the standard basis for \mathbf{R}^4 and $\mathcal{B} = \{1, x, x^2, x^3\}$.
 - b) Show that T is an isomorphism. (You do not need to calculate T^{-1} .)
- 5. Let V and W be finite-dimensional vector spaces, and let $T: V \to W$ be a surjective linear transformation.
- a) Show that there exists a linear transformation $U: W \to V$ such that $T \circ U = \mathrm{id}_W$. Hint: you can define U on a basis for W and use the linear extension theorem.
 - b) Give an example to show that $U \circ T$ need not equal id_V .
- 6. Let V be a finite-dimensional vector space, and let $T: V \to V$ be a linear transformation such that $T^2 = 0_V$ (Recall that $T^2 = T \circ T$, and that 0_V is the zero linear transformation).
 - a) Show that dim Image $T \leq (1/2) \dim V$.
 - b) Give an example where dim Image $T \leq (1/2) \dim V$, but $T^2 \neq 0_V$.
- 7. Define $T: \mathcal{P}_2 \to \mathcal{P}_2$ by

$$Tf(x) = f(1-x),$$
 e.g., $T(x^2 - 3x + 4) = (1-x)^2 - 3(1-x) + 4 = x^2 + x + 2.$

- a) Find the matrix $\mathcal{B}[T]_{\mathcal{B}}$ of T with respect to the basis $\mathcal{B} = \{1, x, x^2\}$.
- b) Show that $_{\mathcal{B}}[T]_{\mathcal{B}}$ is similar to

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

- 8. Let V be a finite-dimensional inner product space, and let $P:V\to V$ be a self-adjoint linear transformation such that $P^2 = P$.
 - a) Show that if λ is an eigenvalue of P, then $\lambda = 0$ or $\lambda = 1$.
 - b) Show that P is the orthogonal projection onto a certain subspace W of V.
- 9. Let V be a finite-dimensional **complex** inner product space, and let $T: V \to V$ be a unitary transformation. Recall that this means that $T^* = T^{-1}$, which is a fancy way of saying that T is an isometry: for all $\vec{v}, \vec{w} \in V$, $\langle T(\vec{v}), T(\vec{w}) \rangle = \langle \vec{v}, \vec{w} \rangle$.
 - a) Show that if λ is a (complex) eigenvalue of T, then $|\lambda| = 1$.
 - b) Show that T is diagonalizable, by imitating the proof of the spectral theorem.