American University of Beirut

Mathematics 219 Final Examination (Time: 2 hrs.)

N. Nahlus Jan 28, 2003

1. (40 %) Prove (concisely) or disprove (by a counter example)

any 10 of the following 12 parts (in an inner product space V)

- (a) $4(u,v) = ||u+v||^2 ||u-v||^2$
- (b) Non-zero orthogonal vectors are linearly independent.
- (c) Two $m \times n$ matrices have the same null space iff they have the same row space.
- (d) Similar $n \times n$ matrices have the same row space.
- (e) Similar matrices have the same eigenvalues.
- (f) If a set of 4 vectors (say in \mathbb{R}^4) have the property that <u>each 3</u> of them <u>are linearly independent</u>, then this set is linearly independent.
- (g) $f(A \oplus B) = f(A) \oplus f(B)$ (for every linear transformation f & A and B are subspaces of V)
- (h) For an $m \times n$ matrix A, A & RRE(A) have the same null space & row space.
- (i) For an $m \times n$ matrix A, A & RRE(A) have the same column space.
- (j) A 4×4 matrix with 4 distinct eigenvalues is diagonlizable.
- (k) There exists a square matrix with $\lambda = 0$ as an eigenvalue.
- (1) For any symmetric $n \times n$ matrix A, A and A^7 have the same null space. (Hint: Prove it)
- 2. (8%) Find the <u>least squares</u> (best possible) solutions of the system $\{x+y+z=0 \& x+y+z=8\}$.
- 3. (8%) (a) What do we know about arbitrary symmetric matrices regarding eigenvalues & diagonalization?
- (b) Apply the Cauchy-Schwarz inequality on C[a, b]= The inner product space of continous functions on the interval [a, b] (with the well-known way of "dotting" functions).
- **4.** (7 %) Let T: V→W be a linear transformation of vector spaces. State the rank-nullity theorem for T. Then use it to show that if T is injective and dimV=dimW=n, then T must be onto.
- 5. (7 %) Let $T:V\to W$ be a given injective linear transformation of vector spaces (say dim V=4, dim W=6) Find a linear transformation $S: W \to V$ such that SoT=I (identity on V).

(Hint: Apply the Linear Extension Theorem with good choices of bases)

- 6. (13 %) Let $A = \begin{bmatrix} 3 & 1 & 0 \\ 6 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}$
- (i) Find the eigen values of A and a basis for each eigen space of A.
- (ii) Show that A is diagonalizable and find the exact relation between A, P and D. (Do not calculate P^{-1}).
- 7. (12%) Let $A = \begin{bmatrix} 1 & 0 & 1 & 5 \\ 2 & 1 & 4 & 11 \\ 0 & 3 & 6 & 3 \end{bmatrix}$ & $RRE(A) = \begin{bmatrix} 1 & 0 & 1 & 5 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 - (i) Find a basis for each of the row space, column space, and the null space of A. Justify
 - (ii) Does the system AX = B have a solution for every B in R^3 ? Explain.
- 8. (5%) Prove or disprve (by a counter example): similar $n \times n$ matrices have the same row space & the same column space.

