Math 219 Final Exam

January 23, 2004

Time: 90 minutes

All vector spaces are assumed to be finitely generated.

- 1. Let $T:U\to V$ and $S:V\to W$ be linear transformations of vector spaces. Prove that the composed map $ST:U\to W$ is a linear transformation.
- 2. Let $T: V \to W$ be a linear transformation of vector spaces. Prove that the map T is injective if and only if ker T = 0.
- 3. Let $T: V \to W$ be an *injective* linear transformation of vector spaces and let $\{a_1, \ldots, a_n\}, n \ge 1$, be a linearly independent subset of V. Prove that $\{T(a_1), \ldots, T(a_n)\}$ is a linearly independent subset of W
- 4. Let $T: V \to V$ be an injective linear transformation from the vector space V to itself. Prove that T is an isomorphism. (Hint: use the result in problem 3 or recall the formula dim $V = \dim \ker T + \dim \operatorname{im} T$ and exercise 2).
- 5. Let V_1 and V_2 be subspaces of a vector space V such that $V_1 + V_2 = V$ and $V_1 \cap V_2 = 0$. Prove that dim $V = \dim V_1 + \dim V_2$.
- 6. Let V be the vector space of all polynomials over \mathbb{R} of degree $< n, n \ge 1$ and let $T: V \to V$ be the operation of forming derivatives. Write down the $n \times n$ matrix A of T relative to the ordered basis $\{1, x, \ldots, x^{n-1}\}$.

. *