AMERICAN UNIVERSITY OF BEIRUT
 Mathematics Department
 Math 219 - Final
 Fall 2005-2006

Name: \qquad ID: \qquad

Instructor: Ms. Diana Audi

I- ($\mathbf{2 0}$ points) Let $V=C[0,1]$ be the vector space of all continuous functions on $[0,1]$. We define an inner product $\langle.,$.$\rangle on V$ to be: $<f, g>=\int_{0}^{1} f(x) g(x) d x, \quad$ forall $f, g \in V$.
a- Let $W=\operatorname{span}\{1, x\}, \quad h=4+x^{2}$, find the orthogonal projection of h on W.
b- Find the distance $d(h, W)$ from h to W.
c- Find an upper bound on $\int_{0}^{1} x^{100} \sqrt{x^{2}+1} d x$.
II- (35 points)Let $T: M_{2 \times 2}(F) \rightarrow M_{2 \times 2}(F)$ be the mapping defined by $T(A)=A^{T}$, the transpose of A, and F is the field of complex numbers.
a- Verify that T is a linear operator on $M_{2 \times 2}(F)$.
b- Let $\beta=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ be the standard basis for $M_{2 \times 2}(F)$, find $[T]_{\beta}$.
c- Find the eigen values of T and describe the corresponding eigen spaces.
d- Show that T is digonalizable, and find a basis β^{\prime} of $M_{2 \times 2}(F)$ consisting of eigen vectors of T.
e- Find an invertible matrix P such that $[T]_{\beta^{\prime}}=P^{-1}[T]_{\beta} P$.
III- (25 points)Let $A_{n \times n}$ matrix, with $a_{i j}=1$, for all i, j.
$A=\left(\begin{array}{ccc}1 & 1 \ldots \ldots . & 1 \\ 1 & 1 \ldots \ldots . & 1 \\ 1 & 1 \ldots \ldots & 1 \\ . & \ldots \ldots . & . \\ . & \ldots \ldots . & . \\ 1 & 1 \ldots \ldots . & 1\end{array}\right)$
a- Find $\operatorname{rank}(A)$ and $\operatorname{nullity}(A)$.
b- Deduce that $\lambda_{1}=0$ is an eigen value of A, and find the dimension of eigen space corresponding for $\lambda_{1}=0$.
c- Show that $\lambda_{2}=n$ is an eigen value of A, and find the dimension of
eigen space corresponding for $\lambda_{2}=n$.(Hint: find A

$$
\left(\begin{array}{c}
1 \\
1 \\
1 \\
\cdot \\
\cdot \\
1
\end{array}\right)
$$

d- Show that A is diagonalizble .
IV- (25 points) Let $T: F^{3} \rightarrow F^{3}$ be a linear operator on F^{3}, where F is the field of complex numbers. Let $\beta=\left\{e_{1}, e_{2}, e_{3}\right\}$ be the standard basis of F^{3}.
Let $[T]_{\beta}=\left(\begin{array}{ccc}2 & 0 & i \\ 0 & 1 & 0 \\ -i & 0 & -2\end{array}\right)$
a- Show that T is a self adjoint linear operator.
b- Deduce that T is diagonalizable.
c- Find the eigen values of T.
d- let $\|T\|=\max _{\| x=1| |}\|T(x)\|$, Find $\|T\|$?
V- (25 points)Let V be an inner product space over \mathbf{R}.Let $T: V \rightarrow V$ be a linear operator on V.
a- Show that $\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)$.
b- Using part(a), show that $\|T(x)\|=\|x\|$ for all $x \in V$ if and only if $<T(x), T(y)>=<x, y>$ for all $x, y \in V$.
c- If T is an isometry i.e $(\|T(x)\|=\|x\|$ for all $x \in V)$, find the eigen values of T.
d- If T is an isometry, show that T is one to one.
VI- (15 points) 1 - Let $T: V \rightarrow W$ be a linear transformation, with $\operatorname{dim}(V)=n$ Let $\left\{v_{1}, . . v_{k}\right\}$ be a basis for $\operatorname{ker} T$, and $\left\{v_{1}, \ldots v_{k}, v_{k+1}, . . v_{n}\right\}$ a basis for V .
a- Show that $\left\{T\left(v_{k+1}\right), . ., T\left(v_{n}\right)\right\}$ is a basis for the range of T.
b- Deduce that $\operatorname{Rank}(T)+N(T)=n$
2-(15 points)- Let $T: V \rightarrow V$ be a linear operator, with $\operatorname{dim}(V)=n$ and $\operatorname{rank}\left(T^{2}=\operatorname{To} T\right)=\operatorname{rank}(T)$.
a- show that $N\left(T^{2}\right)=N(T)$.
b- Deduce that $\operatorname{Ker} T^{2}=\operatorname{Ker} T$.
c- Show that $V=\operatorname{Ker} T \oplus \operatorname{Range}(T)$.
Application:(25 points) Let V be an inner product space, and W be a subspace of V. Let $T: V \rightarrow V$ be a linear operator on V, with $T(v)=\operatorname{proj}_{W}(v)$ for all $v \in V$.
a- Find $\operatorname{range}(T)$ and $\operatorname{Ker}(T)$.
d- Find $T^{2}=T o T$.
c- Show that $\|T(v)\| \leq\|v\|$ for all $v \in V$.
VII- (15 points)Let $T: \mathbf{R}^{\mathbf{3}} \rightarrow \mathbf{R}^{\mathbf{3}}$ be a linear operator on $\mathbf{R}^{\mathbf{3}}$, with
$T^{3}=T o T o T=0$. Let $a \in \mathbf{R}^{3}$ be such that $T^{2}(a) \neq 0$.
Show that $\left\{a, T(a), T^{2}(a)\right\}$ is a basis for \mathbf{R}^{3}.

VIII- (Bonus 10 points)Let T, S be linear operators on a finite dimensional vector space V.
a- If $T o S$ is one to one, prove that S is one to one.
b- If $T o S$ is onto ,prove that T is onto.
c- Deduce that if $T o S$ is invertible , then T and S are invertible.

