AMERICAN UNIVERSITY OF BEIRUT Mathematics Department Math 219 - Final Fall 2005-2006

Name:.....

ID:....

(1)

Instructor: Ms. Diana Audi

Time: 2 hrs

- **I-** (20 points) Let V = C[0, 1] be the vector space of all continuous functions on [0, 1]. We define an inner product $\langle ., . \rangle$ on V to be: $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$, for all $f, g \in V$.
 - a- Let $W = span\{1, x\}$, $h = 4 + x^2$, find the orthogonal projection of h on W.
 - b- Find the distance d(h, W) from h to W.
 - c- Find an upper bound on $\int_0^1 x^{100} \sqrt{x^2 + 1} dx$.
- **II-** (35 points)Let $T: M_{2\times 2}(F) \to M_{2\times 2}(F)$ be the mapping defined by $T(A) = A^T$, the transpose of A, and F is the field of complex numbers.
 - a- Verify that T is a linear operator on $M_{2\times 2}(F)$.
 - b- Let $\beta = \{e_1, e_2, e_3, e_4\}$ be the standard basis for $M_{2 \times 2}(F)$, find $[T]_{\beta}$.
 - c- Find the eigen values of T and describe the corresponding eigen spaces.
 - d- Show that T is digonalizable, and find a basis β' of $M_{2\times 2}(F)$ consisting of eigen vectors of T.
 - e- Find an invertible matrix P such that $[T]_{\beta'} = P^{-1}[T]_{\beta}P$.

III- (25 points)Let $A_{n \times n}$ matrix, with $a_{ij} = 1$, for all i, j.

 $A = \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \dots & 1 \end{pmatrix}$

- a- Find rank(A) and nullity(A).
- b- Deduce that $\lambda_1 = 0$ is an eigen value of A, and find the **dimension** of eigen space corresponding for $\lambda_1 = 0$.
- c- Show that $\lambda_2 = n$ is an eigen value of A, and find the **dimension** of

eigen space corresponding for
$$\lambda_2 = n.(\text{Hint: find } A \begin{pmatrix} 1\\ 1\\ 1\\ .\\ .\\ 1 \end{pmatrix})$$

- d- Show that A is diagonalizable.
- **IV-** (25 points) Let $T: F^3 \to F^3$ be a linear operator on F^3 , where F is the field of complex numbers. Let $\beta = \{e_1, e_2, e_3\}$ be the standard basis of F^3 .

Let
$$[T]_{\beta} = \begin{pmatrix} 2 & 0 & i \\ 0 & 1 & 0 \\ -i & 0 & -2 \end{pmatrix}$$

- a- Show that T is a self adjoint linear operator.
- b- Deduce that T is diagonalizable.
- c- Find the eigen values of T.
- d- let $||T|| = \max_{||x=1||} ||T(x)||$, Find ||T||?
- V- (25 points)Let V be an inner product space over \mathbf{R} .Let $T: V \to V$ be a linear operator on V.
 - a- Show that $\langle x, y \rangle = \frac{1}{4}(||x+y||^2 ||x-y||^2).$
 - b- Using part(a), show that ||T(x)|| = ||x|| for all $x \in V$ if and only if $\langle T(x), T(y) \rangle = \langle x, y \rangle$ for all $x, y \in V$.
 - c- If T is an isometry i.e $(||T(x)|| = ||x|| \text{ for all } x \in V)$, find the eigen values of T.
 - d- If T is an isometry , show that T is one to one.
- **VI-** (15 points) 1- Let $T: V \to W$ be a linear transformation, with dim(V) = nLet $\{v_1, ..., v_k\}$ be a basis for kerT, and $\{v_1, ..., v_k, v_{k+1}, ..., v_n\}$ a basis for V.
 - a- Show that $\{T(v_{k+1}), .., T(v_n)\}$ is a basis for the range of T.
 - b- Deduce that Rank(T) + N(T) = n

2-(15 points)- Let $T: V \to V$ be a linear operator, with dim(V) = n and $rank(T^2 = ToT) = rank(T)$.

- a- show that $N(T^2) = N(T)$.
- b- Deduce that $KerT^2 = KerT$.
- c- Show that $V = KerT \oplus Range(T)$.

Application: (25 points) Let V be an inner product space, and W be a subspace of V. Let $T: V \to V$ be a linear operator on V, with $T(v) = proj_W(v)$ for all $v \in V$.

- a- Find range(T) and Ker(T).
- d- Find $T^2 = ToT$.
- c- Show that $||T(v)|| \leq ||v||$ for all $v \in V$.
- VII- (15 points)Let $T : \mathbf{R}^3 \to \mathbf{R}^3$ be a linear operator on \mathbf{R}^3 , with $T^3 = ToToT = 0$. Let $a \in \mathbf{R}^3$ be such that $T^2(a) \neq 0$. Show that $\{a, T(a), T^2(a)\}$ is a basis for \mathbf{R}^3 .

- **VIII-** (Bonus 10 points)Let T, S be linear operators on a finite dimensional vector space V.
 - a- If ToS is one to one, prove that S is one to one.
 - b- If ToS is onto ,prove that T is onto.
 - c- Deduce that if ToS is invertible, then T and S are invertible.