

FACULTY OF ARTS & SCIENCES , A. U.B.

Math 219

June 20, 2001

Med s.et

(2-nd Semester , 2000-2001)

FINAL EXAM

(closed book)

Prof. N. Haidar

Time: 2 hours

Sec. 1

Suppose that V is a finite-dimensional vector space and $S \subseteq V$. ÐΙ Apply the basis extension theorem to prove that \exists a subspace \mathcal{T} of V such that $S \cap \mathcal{T} = \{0\}$ and $S + \mathcal{T} = V$.

OII. Let $T: V \to W$ be a linear transformation. Show that if $A_1, A_2, \ldots, A_n \in V$

such that $T(\vec{A}_1)$, $T(\vec{A}_2)$,...., $T(\vec{A}_n)$ are LID, then $\vec{A}_1, \vec{A}_2, \dots, \vec{A}_n$ are LID.

QIII. Let T be a linear transformation on a finite-dimensional vector space V.

If $kerT \cap imageT = \{0\}$, show that V = kerT + imageT.

OIV. Given V = (V, <, >), with V a finite-dimensional vector space. Prove that an orthogonal set of nonzero vectors in V is L I D.

9V. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be such that $T(x,y) = (y-x, y+x), \ \forall (x,y) \in \mathbb{R}^2$.

(i) Show that T is an isomorphism.

(ii) Find a formula for T^{-1} to prove that $2^{-n/2}$ T^n is involutory, i.e. $2^{-n}T^{2n} = I$, $\forall n \in Z = \{0,1.23,...,\infty\}.$

OVI. (i) Determine the eigenspace associated with the smallest eigenvalue of A when

$$A = \begin{pmatrix} 5 & 1 & 0 \\ 1 & 5 & 0 \\ 0 & 0 & 6 \end{pmatrix}; \text{ (ii) prove that } \begin{vmatrix} a & -b & 0 & 0 & 0 \\ 0 & a & -b & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & -b & 0 \\ 0 & 0 & 0 & 0 & a & -b \\ -b & 0 & 0 & 0 & 0 & a \end{vmatrix} = a^{n} b^{n}.$$

- **③**VII. Prove that if V = (V, <, >), with V a finite-dimensional vector space and if $W \subseteq V$, then $W \oplus W^{\perp} = V$.
- **O**VIII. Consider the vector $\vec{S} = (6.0.12) \in \mathbb{R}^3$. Let W be the subspace of \mathbb{R}^3 spanned by $\vec{A}_{\perp} = (1,0,1)$ and $\vec{A}_{\perp} = (2,1,0)$.
 - (i) Decompose \vec{S} into the sum of a vector $\vec{B} \in W$ and a vector $\vec{C} \in W^{\perp}$.
 - (ii) Find the projection matrix for W and use it to find the projection of \bar{S} on W.
 - (iii) Apply the Gram-Schmidt process to construct an orthonormal basis for W.
- **G**IX. Given the linear algebraic system of equations

$$\begin{pmatrix} 2 & 1 \\ 3 & -1 \\ 2 & (\beta^2 - 8) \end{pmatrix} \quad \begin{pmatrix} x \\ y \end{pmatrix} = \quad \begin{pmatrix} 3 \\ 4 \\ \beta \end{pmatrix}.$$

- Determine the value of β for which the system becomes inconsistent.
- (ii) Find the minimal norm solution (the pseudo solution) of the previous inconsistent system.

