

Mathematics 219 Final Exam. (August 16, 2004)

Time: 130 minutes

1. Let \mathbf{A} and \mathbf{B} be two matrices with 7 columns such that rank $(\mathbf{A})=2$, rank $(\mathbf{B})=3$, rank $\left(\frac{\mathbf{A}}{\mathbf{B}}\right)=5$.

Let A^* , B^* , C^* be the *null spaces* of A, B and $\begin{pmatrix} A \\ B \end{pmatrix}$ respectively. (i) Use the rank-nullity theorem to find the

dimensions of A^* , B^* , and C^* .

- (ii) Deduce that $\mathbf{A}^* + \mathbf{B}^* = \mathbf{R}^7$.
- 2. If $\{a, b, c\}$ is a basis of a vector space V, show that $\{a+c, b+c, c\}$ is also a basis of V.
- 3. Let $f: V \to W$ be linear transformation of vector spaces such that $\{f(v_1), \dots, f(v_n)\}$ are linearly independent. Show that $\{v_1, \dots, v_n\}$ are linearly independent vectors in V.
- 4. Prove the following theorem Without using the rank-nullity Theorem.

Theorem: Let $f: V \to W$ be linear transformation of vector spaces. If f is 1-1 and dimV=dimW, then f is an isomorphism. (**Reminder**: You may use any result proven in class unlessyou are asked to prove it)

- **5.** Find a 5×5 matrix A such that rank A=3 and rank $A^2=2$. (Hint: Apply the Linear Extension Theorem)
- 6. Show that similar matrices have the same determinant, the same trace, and the same eigen values.
- 7. If 4 is an eigenvalue of T^2 , show that 2 or -2 is an eigenvalue of T. (Hint: Use upper triangulization)
- 8. Let $A = \begin{bmatrix} 3 & 1 & 0 \\ 6 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}$ (i) Find the eigen values of A and a basis for each eigen space of A.
- (ii) Show that A is diagonalizable and find the exact relation between A, P and D. (Do not calculate P^{-1}).
- 9. (a) What do we know about arbitrary symmetric matrices regarding eigenvalues & diagonalization?
- (b What do we know about the minimal polynomial with respect to diagonalization?
- (c) Apply the Cauchy-Schwarz inequality the inner product space of continous functions on [a, b] (with the well-

known way of "dotting" functions), then find an upper bound on $\int_{0}^{1} x^{500} e^{2x} dx$.

10. True-False. If false, give a counter example

- (a) If a set of 3 vectors (say in \mathbb{R}^3) have the property that each 2 of them are linearly independent, then this set is linearly independent.
- (b) For an $m \times n$ matrix A, A & RRE(A) have the same null space & row space.
- (c) For an $m \times n$ matrix A, A & RRE(A) have the same column space.
- (d) A 4×4 matrix with 4 distinct eigenvalues is diagonlizable.
- 11. Suppose every vector in V is an eigen vector for T where T is a linear operator on a vector space V, show that T is a scaler multiple of the identity I. (Hint: Use a, b, a+b)
- 12. Let V=A+B=A+C where A and B are subspaces of a vector space V. Suppose dimA= ∞ , dimB=5, and A \cap B = 0 = A \cap C. Show that dimC=5.