```
CMPS 256 - ADVANCED ALGORITHMS AND DATA STRUCTURES
Fall 2012 - 2013 Semester
Final Exam
Wednesday January 9, 8:00 a.m.
2 hours
```


Instructions.

This final is scored out of 100 .
This final is open book and open notes: you can use the textbook, notes you have taken in class, your homework solutions, and all material that I have posted to the course Moodle site. Show your work, as partial credit will be given.
You may use any algorithm that was covered in class: give the name of the algorithm and a page number in the textbook where the algorithm is presented. If taken from your lecture notes, just say "lecture notes."

Please start each answer on a new page.

Exam policy: if you are unsure about the meaning of a question, raise your hand and I will come to you. I will discuss only what is on the exam sheet. I will NOT discuss anything that you have written down.

Best of luck!

Problem 1. (20 points) State whether the following are true or false (5 points each)
a. $n^{3}=\Omega\left(n^{3}\right)$

Sample solution. True
b. $\lg \left(n^{n}\right)=\Theta(n \lg n)$

Sample solution. True
c. $\lg \left(n^{n}\right)+n^{2}=\Theta(n \lg n)$

Sample solution. False
d. $n^{4}+4 n^{3}+5 n^{2}+7 \sim 2 n^{4}$

Sample solution. False

Problem 2. (20 points) Consider the following recurrence

$$
T(n)=3 T(n / 3)+n
$$

a. (10 points) Draw the recursion tree for this recurrence.
b. (10 points) Solve the recurrence by summing up the recursion tree. GIve a tight bound, i.e., a solution of the form $T(n)=\Theta(f(n))$. Half credit for proving the upper bound only, or proving the lower bound only.

Sample solution. Level i of the recursion tree has 3^{i} nodes, each with input $n / 3^{i}$. Each level has cost n. The height is $\log _{3} n$. Hence cost of tree is $n \log _{3} n$, which is $\Theta(n \lg n)$.

Problem 3. (30 points) You are given an array A of size n. An element $A[i]$ is out-of-order iff $A[i]<\max (A[0 . . i-1])$ where $\max (A[0 . . i-1])$ is the maximum element in $A[0], \ldots, A[i-1]$. In other words, an element is out-of-order if it is smaller than the maximum of all the elements below it.

You are given that A contains k out-of-order elements, with $k \leq n / \lg n$. You are not given the actual value of k.

Give pseudocode for an algorithm to sort A in time $O(n)$.
Grading is as follows:

- 10 points for the code itself, provided that it is actually correct and runs in worst-case time $O(n)$
- 10 points for an informal argument which proves that your code is correct, i.e., actually sorts A
- 10 points for a running time analysis which proves that your code runs in worst-case time $O(n)$

Sample solution. Pseudocode:

Traverse A, maintaining the maximum m of the elements that are not out-of-order. That is, if the next element is larger, then set m to it, otherwise leave m unchanged.

Use m to determine whether the next element is out-of-order $(<m)$ or not $(\geq m)$.
While traversing, copy all elements that are not out-of-order to another array B, and copy all elements that are out-of-order to a third array C.

By its construction, B is ordered.
C is not necessarily ordered, and has size k. Sort C using mergesort in time $O(k \lg k)$.
Merge B and C to give the result of sorting A.
Running time:
Merge and traversal take time $O(n)$. So total running time is $O(n+k \lg k)$. Now $k \leq n / \lg n$, so $k \lg k \leq(n / \lg n) \lg (n / \lg n)=(n / \lg n)(\lg n-\lg \lg n)=n-n \lg \lg n / \lg n=O(n)$. Hence total running time is $O(n+k \lg k)=O(n)$.

Problem 4. (30 points) Let $G=(V, E)$ be a directed graph. A source node in G is a node with no incoming edges. Write pseudocode for an algorithm that determines if G contains a source node. Your algorithm should have average case running time $O(V+E)$.

Grading is as follows:

- 10 points for the code itself, provided that it is actually correct and runs in average-case time $O(V+E)$
- 10 points for an informal argument which proves that your code is correct, i.e., correctly determines if G contains a source node
- 10 points for a running time analysis which proves that your code runs in average-case time $O(V+E)$

Reduced credit (21 points) for an algorithm with worst case running time $O(E \lg V)$.
Sample solution. Use a hash table H. Use separate chaining with array of size $V / 5$, or linear probing with array of size $2 V$, which gives average case constant time operations. First insert all nodes of G into H. This takes time $O(V)$ on average. Now traverse all the adjacency lists, and remove from H any node found on some adjacency list, which therefore has an incoming edge, and so is not a source. This takes time $O(E)$ on average. After traversal, any nodes left in H are source nodes. So G contains a source node iff H is not empty. Can check emptiness of H in $O(V)$ worst case time. Total running time is $O(V+E)$ average case.

