
CMPS 256 — ADVANCED ALGORITHMS AND DATA STRUCTURES
Fall 2012 – 2013 Semester

Final Exam
Wednesday January 9, 8:00 a.m.

2 hours

Instructions.

This final is scored out of 100.
This final is open book and open notes: you can use the textbook, notes you have taken in
class, your homework solutions, and all material that I have posted to the course Moodle site.
Show your work, as partial credit will be given.
You may use any algorithm that was covered in class: give the name of the algorithm and a
page number in the textbook where the algorithm is presented. If taken from your lecture notes,
just say “lecture notes.”

Please start each answer on a new page.

Exam policy: if you are unsure about the meaning of a question, raise your hand
and I will come to you. I will discuss only what is on the exam sheet. I will NOT
discuss anything that you have written down.

Best of luck!

Problem 1. (20 points) State whether the following are true or false (5 points each)

a. n3 = Ω(n3)

Sample solution. True

b. lg(nn) = Θ(n lg n)

Sample solution. True

c. lg(nn) + n2 = Θ(n lg n)

Sample solution. False

d. n4 + 4n3 + 5n2 + 7 ∼ 2n4

Sample solution. False

Problem 2. (20 points) Consider the following recurrence

T (n) = 3T (n/3) + n.

a. (10 points) Draw the recursion tree for this recurrence.

b. (10 points) Solve the recurrence by summing up the recursion tree. GIve a tight bound,
i.e., a solution of the form T (n) = Θ(f(n)). Half credit for proving the upper bound only, or
proving the lower bound only.

Sample solution. Level i of the recursion tree has 3i nodes, each with input n/3i. Each level
has cost n. The height is log3 n. Hence cost of tree is n log3 n, which is Θ(n lg n).

1



Problem 3. (30 points) You are given an array A of size n. An element A[i] is out-of-order
iff A[i] < max(A[0..i− 1]) where max(A[0..i− 1]) is the maximum element in A[0], . . . , A[i− 1].
In other words, an element is out-of-order if it is smaller than the maximum of all the elements
below it.

You are given that A contains k out-of-order elements, with k ≤ n/ lg n. You are not given the
actual value of k.

Give pseudocode for an algorithm to sort A in time O(n).

Grading is as follows:

• 10 points for the code itself, provided that it is actually correct and runs in worst-case
time O(n)

• 10 points for an informal argument which proves that your code is correct, i.e., actually
sorts A

• 10 points for a running time analysis which proves that your code runs in worst-case time
O(n)

Sample solution. Pseudocode:

Traverse A, maintaining the maximum m of the elements that are not out-of-order. That is, if
the next element is larger, then set m to it, otherwise leave m unchanged.

Use m to determine whether the next element is out-of-order (< m) or not (≥ m).

While traversing, copy all elements that are not out-of-order to another array B, and copy all
elements that are out-of-order to a third array C.

By its construction, B is ordered.

C is not necessarily ordered, and has size k. Sort C using mergesort in time O(k lg k).

Merge B and C to give the result of sorting A.

Running time:

Merge and traversal take time O(n). So total running time is O(n+k lg k). Now k ≤ n/ lg n, so
k lg k ≤ (n/ lg n) lg(n/ lg n) = (n/ lg n)(lg n − lg lg n) = n − n lg lg n/ lg n = O(n). Hence total
running time is O(n + k lg k) = O(n).

Problem 4. (30 points) Let G = (V,E) be a directed graph. A source node in G is a node
with no incoming edges. Write pseudocode for an algorithm that determines if G contains a
source node. Your algorithm should have average case running time O(V + E).

Grading is as follows:

• 10 points for the code itself, provided that it is actually correct and runs in average-case
time O(V + E)

• 10 points for an informal argument which proves that your code is correct, i.e., correctly
determines if G contains a source node

• 10 points for a running time analysis which proves that your code runs in average-case
time O(V + E)

2



Reduced credit (21 points) for an algorithm with worst case running time O(E lg V ).

Sample solution. Use a hash table H. Use separate chaining with array of size V/5, or linear
probing with array of size 2V , which gives average case constant time operations. First insert
all nodes of G into H. This takes time O(V ) on average. Now traverse all the adjacency lists,
and remove from H any node found on some adjacency list, which therefore has an incoming
edge, and so is not a source. This takes time O(E) on average. After traversal, any nodes left
in H are source nodes. So G contains a source node iff H is not empty. Can check emptiness
of H in O(V ) worst case time. Total running time is O(V + E) average case.

3


