
CMPS 256 — ADVANCED ALGORITHMS AND DATA STRUCTURES
Fall 2012 – 13

Quiz 1, Section 1
Monday November 12, 9:00 – 9:50 a.m.

Instructions.
This quiz is scored out of 100.
This quiz is open book and open notes: you can use the textbook, notes you have taken in class,
and your homework solutions.
Show your work, as partial credit will be given.
You may use any algorithm that was covered in class. Just give the name of the algorithm and
the chapter or page number in the book where the algorithm is given. If taken from your lecture
notes, just say “lecture notes.”

Please draw a horizontal line to separate each answer from the next.
Best of luck!

Problem 1 (25 points, 5 points each).

Give tilde approximations for the following. Give the simplest possible expression. Show your
work.

1. 23n + (2n)4

2. (n2 + n)/n2

State whether the following are true or false. Give a brief proof for your answer.

3. n3 lg n = Ω(n3.01)

4. lg(nn) = O(n)

5. (2n + 3)(3n + 4) ∼ 3n2

Problem 2 (25 points).

Give the worst case running time of the following, expressed only in terms of n. You may
express this as Θ(f(n)), for suitable f(n).

{n > 0}
i := 1;
while i ≤ n2

j := 1;
while j ≤ i

j := j + 1;
endwhile
i := i + 1;

endwhile

1

Problem 3 (50 points). You are given as input an array a that is bitonic: it consists of a non-
increasing sequence of elements followed by a non-decreasing sequence of elements. Formally,
you may assume that the following precondition holds initially, where n = |a| is the size of a:

(∃ k : 0 < k < n− 1 : nonInc(a[0, . . . , k]) ∧ nonDec(a[k, . . . , n− 1]).

where nonInc(a[`, . . . , r] , (∀ i : ` ≤ i < r : a[i] ≥ a[i + 1]), and
nonDec(a[`, . . . , r] , (∀ i : ` ≤ i < r : a[i] ≤ a[i + 1]).

You are to design an algorithm for sorting a. Your algorithm must have worst case running
time in O(n). Remember that worst case is a limit on the running time for all inputs, unlike
average case running time.

Part a, (20 points). Give a design of your solution. This should be sufficiently detailed so that
all algorithmic details are clear, and it would be straightforward to translate into executable
code. You may use several levels of refinement if you wish.

Part b, (15 points). Give a proof that your algorithm correctly sorts a. The use of effect-
comments (assertions) may help you.

Part c, (15 points). Prove that your algorithm has average case running time in O(n).

You will receive NO CREDIT for an O(n lg n) or worse running time algorithm.

2

Sample Solutions.

Problem 1 (25 points, 5 points each).

Give tilde approximations for the following. Give the simplest possible expression. Show your
work.

1. 23n + (2n)4 Sample solution. (2n)4, since its the higher order term. So 24n.

2. (n2 + n)/n2 Sample solution. (n2 + n)/n2 = 1 + 1/n. The 1/n goes to 0, so its ∼ 1.

State whether the following are true or false. Give a brief proof for your answer.

3. n3 lg n = Ω(n3.01) Sample solution. False, since n0.01 grows faster than lg n.

4. lg(nn) = O(n) Sample solution. lg(nn) = n lg n which grows faster than O(n), so false.

5. (2n+3)(3n+4) ∼ 3n2 Sample solution. (2n+3)(3n+4) has high order term 6n2 which
is not ∼ 3n2, so false.

Problem 2 (25 points).

Give the worst case running time of the following, expressed only in terms of n. You may
express this as Θ(f(n)), for suitable f(n).

{n > 0}
i := 1;
while i ≤ n2

j := 1;
while j ≤ i

j := j + 1;
endwhile
i := i + 1;

endwhile

Sample solution. Running time given by the following summation, by putting the limits of
the loop as the limits of the sum:

n2∑
i=1

i∑
j=1

1

the summand is 1 since inner loop body has constant running time. We could also have used a
constant c.

The cost of i := i + 1 is ignored since its lower order.

The above simplifies to
n2∑
i=1

i

which further simplifies to n2(n2 + 1)/2, which is Θ(n4).

3

Problem 3 (50 points). You are given as input an array a that is bitonic: it consists of a non-
increasing sequence of elements followed by a non-decreasing sequence of elements. Formally,
you may assume that the following precondition holds initially, where n = |a| is the size of a:

(∃ k : 0 < k < n− 1 : nonInc(a[0, . . . , k]) ∧ nonDec(a[k, . . . , n− 1]).

where nonInc(a[`, . . . , r] , (∀ i : ` ≤ i < r : a[i] ≥ a[i + 1]), and
nonDec(a[`, . . . , r] , (∀ i : ` ≤ i < r : a[i] ≤ a[i + 1]).

You are to design and code an O(n) method for sorting a. Your algorithm must have worst
case running time in O(n). Remember that worst case is a limit on the running time for all
inputs, unlike average case running time.

Assume that levels 0 and 1 for the design are those that we presented in class for sorting.

Part a, (20 points). Give a design of your solution. This should be sufficiently detailed so that
all algorithmic details are clear, and it would be straightforward to translate into executable
code. You may use several levels of refinement if you wish.

Sample solution.
linear scan from i = 0 find first i s.t. a[i] < a[i + 1]. let this be k.
reverse a[0, . . . , k]
now have two nondecreasing array sections
use merge to merge into final sorted a

note that either section can be empty.

Part b, (15 points). Give a proof that your algorithm correctly sorts a. The use of effect-
comments (assertions) may help you.

Sample solution. Omitted

Part c, (15 points). Prove that your algorithm has average case running time in O(n).

Sample solution.
finding k is by linear search: O(n) since body of loop compares a[i] with a[i + 1].
reverse is O(n) sing the obvious algorithm.
merge was shown to be O(n) in class.

4

