CMPS 256: Advanced Algorithms and Data Structures

Chapter 3 Exercises & Solutions Feb. 23, 2006

Spring 2005-06

Chiraz BenAbdelkader

Compare the rate of growth of each pair of functions f and g below.

f	g	
5n ² + 100n	<i>3n</i> ² + 2	<i>f</i> = ?(<i>g</i>)
log ₃ (n²)	lg(n ³)	f = ?(g)
n ^{lg4}	3 ^{lg n}	f = ?(g)
lg²n	n ^{1/2}	f = ?(g)

Solution

f	g	$\lim_{n \to \infty} f(n)/g(n)$	Answer
5n ² + 100n	3n ² + 2	5/3	$f = \Theta(g)$
log ₃ (n ²)	lg(n ³)	2/3*lg3	$f = \Theta(g)$
n ^{lg4}	3 ^{lg n}	∞	f = ω(g)
lg²n	n ^{1/2}	0	f = o(g)

True or false?

f(n)=O(g(n)) **Þ** f(n)+g(n)=**W**(f(n))

If true, give a proof based on formal definitions of order notation.

If false, give a counter example.

Solution: True. There are many ways to prove this.

First proof method:

 $f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$ (transpose symmetry) Also, $f(n) = \Omega(f(n))$ $\therefore f(n) + g(n) = \Omega(f(n))$ ($\Omega(f(n))$) is closed under addition)

Second proof method:

$$f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n)) \Leftrightarrow \lim_{n \to \infty} \frac{g(n)}{f(n)} > 0 \Rightarrow \left[\lim_{n \to \infty} \frac{g(n)}{f(n)}\right] + 1 > 0$$
$$\Rightarrow \lim_{n \to \infty} \left[\frac{g(n)}{f(n)} + 1\right] > 0 \Rightarrow \lim_{n \to \infty} \frac{g(n) + f(n)}{f(n)} > 0 \Leftrightarrow g(n) + f(n) = \Omega(f(n))$$

Third proof method:

$$\begin{split} f(n) &= O(g(n)) \Leftrightarrow \exists c, n_0 > 0 \mid f(n) \leq cg(n), \forall n \geq n_0 \\ \Leftrightarrow \exists c, n_0 > 0 \mid g(n) \geq \left(\frac{1}{c}\right) f(n), \forall n \geq n_0 \\ \Leftrightarrow \exists c, n_0 > 0 \mid g(n) + f(n) \geq \left(\frac{1}{c} + 1\right) f(n), \forall n \geq n_0 \\ \Leftrightarrow \exists c', n_0 > 0 \mid g(n) + f(n) \geq c' f(n), \forall n \geq n_0 \\ \Leftrightarrow g(n) + f(n) = \Omega(f(n)) \end{split}$$

Order these functions asymptotically from slowest to fastest rate of growth:

- 1. $\sqrt{n} \lg^2 n$
- 2. $20 \lg(5n^4)$
- 3. $n^{2.999}$
- 4. $5^{1/\lg n}$
- 5. $\lg(n!) / \lg n$
- 6. $n + \sqrt[4]{n}$
- 7. $3 \lg^2 n + n^{0.6}$
- 8. $n^3 / \lg n$
- 9. (*n*-100)!
- 10. $n^{\lg \lg n}$

Solution Strategy:

In any question of this form, first simplify each function as much as possible

Typically, simplify to well-known functions such as polynomial, poly-log, exponential, or factorial

Use following rules from formula sheet to sort functions

Polynomials are easy to compare: for any a,b>0, if a>b then $n^a = \omega(n^b)$

So are exponentials: for any a,b>1, if a>b then $a^n = \omega(b^n)$

Also we know that: for any c>1, a>0, b>0

 $n^{n} = \mathbf{w}(n!) = \mathbf{w}(c^{n}) = \mathbf{w}(n^{b}) = \mathbf{w}(\log^{a}n)$

If cannot use any of these rules, compare functions by computing the limit of their ratio

First step: simplify functions whenever possible

1. $\sqrt{n \lg^2 n} = \Theta(n^{0.5} \lg^2 n)$ 2. $20 \lg(5n^4) = 20 \lg 5 + 80 \lg n = \Theta(\lg n)$ 3. $n^{2.999} = \Theta(n^{2.999})$ 4. $5^{1/\log n} = \Theta(1)$ (because this is a decreasing function!) 5. $\lg(n!) / \lg n = \Theta(n \lg n / \lg n) = \Theta(n)$ (because $f(n) = \Theta(g(n)) \Rightarrow \frac{f(n)}{h(n)} = \Theta(\frac{g(n)}{h(n)})$) 6. $n + \sqrt[4]{n} = \Theta(n)$ 7. $3 \lg^2 n + n^{0.6} = \Theta(n^{0.6})$ 8. $n^3 / \lg n = \Theta(n^3 / \lg n)$ 9. $(n-100)! = \Theta((n-100)!)$ 10. $n^{\lg \lg n} = \Theta((\lg n)^{\lg n})$ (based on the formula $a^{\log_b n} = n^{\log_b a}$)

<u>Second step</u>: separate the functions into homogeneous groups in increasing order of growth

> Constants : $\Theta(1)$ Logarithms : $\Theta(\lg n)$ Poly - logs : None Polynomial s : $\Theta(n) \ \Theta(n^{0.6}) \ \Theta(n^{2.999})$ Exponentials : None Factorials : $\Theta(n-100)$! Other : $\Theta(n^{0.5} \lg^2 n) \ \Theta(n^3 / \lg n) \ \Theta(\lg n)^{\lg n}$

<u>Third step</u>: sort the functions in each group Use theorems (in formula sheet); otherwise compute the limit of ratio of pairs of functions For example, we have the following:

$$\lim_{n \to \infty} \frac{n^3 / \lg n}{n^{0.5} \lg^2 n} = \lim_{n \to \infty} \frac{n^{2.5}}{\lg^3 n} = \infty \Longrightarrow \left[\frac{n^3 / \lg n}{\lg n} = \mathbf{W}(n^{0.5} \lg^2 n) \right]$$

$$\lim_{n \to \infty} \frac{\lg \left[n^3 / \lg n\right]}{\lg \left[(\lg n)^{\lg n}\right]} = \lim_{n \to \infty} \frac{3\lg n - \lg \lg n}{\lg n \lg \lg n} = \lim_{n \to \infty} \left[\frac{3}{\lg \lg n} - \frac{1}{\lg n}\right] = 0$$
$$\Rightarrow \lg \left[(\lg n)^{\lg n}\right] = \mathbf{w}(\lg \left[n^3 / \lg n\right]) \Rightarrow \left[(\lg n)^{\lg n} = \mathbf{w}(n^3 / \lg n)\right]$$

Given two functions f(n) and g(n), let h(n) = max(f(n),g(n))Prove that: h(n) = Q(f(n)+g(n))

Solution:

Like in Exercise 2, you should use formal definitions of order notation in your proof. Hint: use this definition of Θ -notation $h(n)=\Theta(f(n)+g(n)) \Leftrightarrow$ $\exists c_1, c_2, n_0 > 0 \mid c_1(g(n)+f(n)) \leq h(n) \leq c_2(f(n)+g(n))$

(to be finished as homework)