CMPS 256: Advanced Algorithms and Data Structures

Chapter 3
Exercises \& Solutions
Feb. 23, 2006

Exercise 1

Compare the rate of growth of each pair of functions f and g below.

\mathbf{f}	\mathbf{g}	
$5 n^{2}+100 n$	$3 n^{2}+2$	$f=?(g)$
$\log _{3}\left(n^{2}\right)$	$\lg \left(n^{3}\right)$	$f=?(g)$
$n^{\prime g 4}$	$3^{\lg n}$	$f=?(g)$
$\lg ^{2} n$	$n^{1 / 2}$	$f=?(g)$

Solution

\mathbf{f}	\mathbf{g}	$\lim _{\mathrm{n} \rightarrow \infty} \mathrm{f}(\mathrm{n}) / \mathrm{g}(\mathrm{n})$	Answer
$5 n^{2}+100 n$	$3 n^{2}+2$	$5 / 3$	$\mathrm{f}=\Theta(\mathrm{g})$
$\log _{3}\left(n^{2}\right)$	$\lg \left(n^{3}\right)$	$2 / 3^{*} \lg 3$	$\mathrm{f}=\Theta(\mathrm{g})$
$n^{\lg 4}$	$3^{\lg n}$	∞	$\mathrm{f}=\omega(\mathrm{g})$
$\lg ^{2} n$	$n^{1 / 2}$	0	$\mathrm{f}=0(\mathrm{~g})$

Exercise 2

True or false?

$$
f(n)=O(g(n)) \Rightarrow f(n)+g(n)=\Omega(f(n))
$$

If true, give a proof based on formal definitions of order notation.
If false, give a counter example.

Solution: True. There are many ways to prove this.

Exercise 2 (Cont.)

First proof method:

$$
f(n)=O(g(n)) \Leftrightarrow g(n)=\Omega(f(n)) \quad \text { (transpose symmetry) }
$$

Also, $f(n)=\Omega(f(n))$
$\therefore f(n)+g(n)=\Omega(f(n)) \quad(\Omega(f(n))$ is closed under addition $)$

Second proof method:

$$
\begin{aligned}
& f(n)=O(g(n)) \Leftrightarrow g(n)=\Omega(f(n)) \Leftrightarrow \lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}>0 \Rightarrow\left[\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}\right]+1>0 \\
& \Rightarrow \lim _{n \rightarrow \infty}\left[\frac{g(n)}{f(n)}+1\right]>0 \Rightarrow \lim _{n \rightarrow \infty} \frac{g(n)+f(n)}{f(n)}>0 \Leftrightarrow g(n)+f(n)=\Omega(f(n))
\end{aligned}
$$

Exercise 2 (Cont.)

Third proof method:

$$
\begin{aligned}
f(n)=O(g(n)) & \Leftrightarrow \exists c, n_{0}>0 \mid f(n) \leq c g(n), \forall n \geq n_{0} \\
& \Leftrightarrow \exists c, n_{0}>0 \left\lvert\, g(n) \geq\left(\frac{1}{c}\right) f(n)\right., \forall n \geq n_{0} \\
& \Leftrightarrow \exists c, n_{0}>0 \left\lvert\, g(n)+f(n) \geq\left(\frac{1}{c}+1\right) f(n)\right., \forall n \geq n_{0} \\
& \Leftrightarrow \exists c^{\prime}, n_{0}>0 \mid g(n)+f(n) \geq c^{\prime} f(n), \forall n \geq n_{0} \\
& \Leftrightarrow g(n)+f(n)=\Omega(f(n))
\end{aligned}
$$

Exercise 3

Order these functions asymptotically from slowest to fastest rate of growth:

1. $\sqrt{n} \lg ^{2} n$
2. $20 \lg \left(5 n^{4}\right)$
3. $n^{2.999}$
4. $5^{1 / \lg n}$
5. $\lg (n!) / \lg n$
6. $n+\sqrt[4]{n}$
7. $3 \lg ^{2} n+n^{0.6}$
8. $n^{3} / \lg n$
9. $(n-100)$!
10. $n^{\lg \lg n}$

Exercise 3 (Cont.)

Solution Strategy:

In any question of this form, first simplify each function as much as possible

Typically, simplify to well-known functions such as polynomial, poly-log, exponential, or factorial
Use following rules from formula sheet to sort functions
Polynomials are easy to compare: for any $a, b>0$, if $a>b$ then $\mathrm{n}^{\mathrm{a}}=\omega\left(\mathrm{n}^{\mathrm{b}}\right)$
So are exponentials: for any $a, b>1$, if $a>b$ then $a^{n}=\omega\left(b^{n}\right)$
Also we know that: for any $c>1, a>0, b>0$

$$
n^{n}=\omega(n!)=\omega\left(c^{n}\right)=\omega\left(n^{b}\right)=\omega\left(\log ^{a} n\right)
$$

If cannot use any of these rules, compare functions by computing the limit of their ratio

Exercise 3 (Cont.)

First step: simplify functions whenever possible

1. $\sqrt{n} \lg ^{2} n=\Theta\left(n^{0.5} \lg ^{2} n\right)$
2. $20 \lg \left(5 n^{4}\right)=20 \lg 5+80 \lg n=\Theta(\lg n)$
3. $n^{2.999}=\Theta\left(n^{2.999}\right)$
4. $5^{1 / \lg n}=\Theta(1)$
5. $\lg (n!) / \lg n=\Theta(n \lg n / \lg n)=\Theta(n) \quad$ (because $\left.f(n)=\Theta(g(n)) \Rightarrow \frac{f(n)}{h(n)}=\Theta\left(\frac{g(n)}{h(n)}\right)\right)$
6. $n+\sqrt[4]{n}=\Theta(n)$
7. $3 \lg ^{2} n+n^{0.6}=\Theta\left(n^{0.6}\right)$
8. $n^{3} / \lg n=\Theta\left(n^{3} / \lg n\right)$
9. $(n-100)!=\Theta((n-100)!)$
10. $n^{\lg \lg n}=\Theta\left((\lg n)^{\lg n}\right)$
(because this is a decreasing function!)

Exercise 3 (Cont.)

Second step: separate the functions into homogeneous groups in increasing order of growth

Constants: $\Theta(1)$
Logarithms : $\Theta(\lg n)$
Poly - logs: None
Polynomial s: $\Theta(n) \Theta\left(n^{0.6}\right) \Theta\left(n^{2.999}\right)$
Exponentials: None
Factorials : $\Theta(n-100)$!
Other : $\Theta\left(n^{0.5} \lg ^{2} n\right) \Theta\left(n^{3} / \lg n\right) \Theta(\lg n)^{\lg n}$

Exercise 3 (Cont.)

Third step: sort the functions in each group Use theorems (in formula sheet); otherwise compute the limit of ratio of pairs of functions
For example, we have the following:

$$
\lim _{n \rightarrow \infty} \frac{n^{3} / \lg n}{n^{0.5} \lg ^{2} n}=\lim _{n \rightarrow \infty} \frac{n^{2.5}}{\lg ^{3} n}=\infty \Rightarrow n^{3} / \lg n=\omega\left(n^{0.5} \lg ^{2} n\right)
$$

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{\lg \left[n^{3} / \lg n\right]}{\lg \left[(\lg n)^{\lg n}\right]}=\lim _{n \rightarrow \infty} \frac{3 \lg n-\lg \lg n}{\lg n \lg \lg n}=\lim _{n \rightarrow \infty}\left[\frac{3}{\lg \lg n}-\frac{1}{\lg n}\right]=0 \\
\quad \Rightarrow \lg \left[(\lg n)^{\lg n}\right]=\omega\left(\lg \left[n^{3} / \lg n\right]\right) \Rightarrow(\lg n)^{\lg n}=\omega\left(n^{3} / \lg n\right)
\end{gathered}
$$

Exercise 4

Given two functions $f(n)$ and $g(n)$, let $h(n)=\max (f(n), g(n))$
Prove that: $\quad \mathbf{h}(\mathbf{n})=\Theta(\mathbf{f}(\mathbf{n})+\mathbf{g}(\mathbf{n}))$

Solution:

Like in Exercise 2, you should use formal definitions of order notation in your proof. Hint: use this definition of Θ-notation
$\mathrm{h}(\mathrm{n})=\Theta(\mathrm{f}(\mathrm{n})+\mathrm{g}(\mathrm{n})) \Leftrightarrow$
$\exists c_{1}, c_{2}, n_{0}>0 \mid c_{1}(g(n)+f(n)) \leq h(n) \leq c_{2}(f(n)+g(n))$
(to be finished as homework)

