EECE 632 – Cryptography and Computer Security

Homework #1 – Solution

CHAPTER 2

Exercise #1

A generalization of the *Caesar Cipher* is the *Affine Cipher* given by: $C = (a.P + b) \mod 26$, Where *P* is the plain character and *C* is the cipher character after encryption, *a* and *b* are coefficients. The decryption of the Affine Cipher is given by: $P = a^{-1}(C - b) \mod 26$, where a^{-1} is the inverse of *a* mod 26. Note that characters are assigned values of A=0 and Z=25.

- a) Encrypt "HI" using the *Affine Cipher* with a = 11 and b = 5.
- b) The cipher "ME" was obtained after *Affine* encryption with a = 11 and b = 5. Decrypt it.

a)
$$P = HI \Rightarrow P_1 = 7$$
 (H) and $P_2 = 8$ (I)
 $C_1 = (a.P_1 + b) \mod 26 = (11x7 + 5) \mod 26 = 82 \mod 26 = 4 = E$
 $C_2 = (a.P_2 + b) \mod 26 = (11x8 + 5) \mod 26 = 93 \mod 26 = 15 = P$
 $\Rightarrow C = EP$ **10 POINTS**
b) $C = ME \Rightarrow C_1 = 12$ (M) and $C_2 = 4$ (E)
By inspection: $a^{-1} = 19$
Check: $axa^{-1} \mod 26 = 11x19 \mod 26 = 209 \mod 26 = 1 \checkmark$
 $P_1 = a^{-1}(C_1 - b) \mod 26 = 19(12 - 5) \mod 26 = 3 = D$
 $P_2 = a^{-1}(C_2 - b) \mod 26 = 19(4 - 5) \mod 26 = 7 = H$
 $\Rightarrow P = DH$ **10 POINTS**

Exercise #2

We know that the most frequent letters of the English alphabet are E and T. After doing *Affine* encryption to a plaintext, the most frequent letters became J and k. Break the code by finding the values of a and b.

E = 4 becomes I = 9T = 19 becomes K = 10 $C = (a.P + b) \mod 26$ \Rightarrow 9 = (4a + b) mod 26 eq. 1 $\& 10 = (19a + b) \mod 26$ eq. 2 Subtract eq. 1 from eq. 2 to remove b: $1 = (15a) \mod 26$ By inspection: $\mathbf{a} = \mathbf{7}$ **10 POINTS** Check: 15x7 mod 26 = 105 mod 26 = 1✓ Get b from eq. 1: $9 = (4x7 + b) \mod 26$ By inspection: **b** = 7 **10 POINTS** Check: $(4x7 + 7) \mod 26 = 35 \mod 26 = 9 \checkmark$

Exercise #3

Use *Playfair* code to encrypt the message "HELLOS" using the keyword "homework".

Exercise #4

Using Vigenere cipher, encrypt the word "assignment" using the key "cryptology".

Key	С	r	у	р	t	0	1	0	g	У	
Plain	а	S	S	Ι	g	n	m	e	n	t	
Cipher	С	j	q	х	Z	b	х	S	t	r	10 POINTS

Exercise #5

Use the *Hill Cipher* with key $K = \begin{bmatrix} 5 & 8\\ 17 & 3 \end{bmatrix}$ in order to encrypt "DOGS". Use the same cipher to decrypt "PLAN".

a)
$$D = 3$$

 $0 = 14$
 $G = 6$
 $S = 18$
 $C_1 = K.P_1 \mod 26 = \begin{bmatrix} 5 & 8 \\ 17 & 3 \end{bmatrix} \begin{bmatrix} 3 \\ 14 \end{bmatrix} = \begin{bmatrix} 127 \\ 93 \end{bmatrix} \mod 26 = \begin{bmatrix} 23 \\ 15 \end{bmatrix} = \begin{bmatrix} X \\ P \\ C_2 = K.P_2 \mod 26 = \begin{bmatrix} 5 & 8 \\ 17 & 3 \end{bmatrix} \begin{bmatrix} 6 \\ 18 \end{bmatrix} = \begin{bmatrix} 174 \\ 156 \end{bmatrix} \mod 26 = \begin{bmatrix} 18 \\ 0 \end{bmatrix} = \begin{bmatrix} S \\ A \end{bmatrix}$
 $\Rightarrow C = XPSA$
10 POINTS
b) $P = 15$
 $L = 11$
 $A = 0$
 $N = 13$

 $K = \begin{bmatrix} 5 & 8 \\ 17 & 3 \end{bmatrix}$ Det(K) = 5x3 - 8x17 mod 26 = -121 mod 26 = 9 By inspection: 9⁻¹ = 3 Check: 3x9 mod 26 = 27 mod 26 = 1 \checkmark $\Rightarrow K^{-1} = 3 \begin{bmatrix} 3 & -8 \\ -17 & 5 \end{bmatrix} \mod 26 = \begin{bmatrix} 9 & -24 \\ -51 & 15 \end{bmatrix} \mod 26 = \begin{bmatrix} 9 & 2 \\ 1 & 15 \end{bmatrix}$ P₁ = K⁻¹C₁ mod 26 = $\begin{bmatrix} 9 & 2 \\ 1 & 15 \end{bmatrix} \begin{bmatrix} 15 \\ 11 \end{bmatrix} = \begin{bmatrix} 157 \\ 180 \end{bmatrix} \mod 26 = \begin{bmatrix} 1 \\ 24 \end{bmatrix} = \begin{bmatrix} 8 \\ 7 \end{bmatrix}$ P₂ = K⁻¹C₂ mod 26 = $\begin{bmatrix} 9 & 2 \\ 1 & 15 \end{bmatrix} \begin{bmatrix} 10 \\ 13 \end{bmatrix} = \begin{bmatrix} 26 \\ 195 \end{bmatrix} \mod 26 = \begin{bmatrix} 0 \\ 13 \end{bmatrix} = \begin{bmatrix} A \\ N \end{bmatrix}$ $\Rightarrow P = BYAN$ 10 POINTS