EECE 632 - Cryptography and Computer Security

Homework \#1 - Solution

CHAPTER 2

Exercise \#1

A generalization of the Caesar Cipher is the Affine Cipher given by: $C=(a . P+b) \bmod 26$, Where P is the plain character and C is the cipher character after encryption, a and b are coefficients. The decryption of the Affine Cipher is given by: $P=a^{-1}(C-b) \bmod 26$, where a^{-1} is the inverse of $a \bmod 26$. Note that characters are assigned values of $A=0$ and $Z=25$.
a) Encrypt "HI" using the Affine Cipher with $a=11$ and $b=5$.
b) The cipher "ME" was obtained after Affine encryption with $a=11$ and $b=5$. Decrypt it.
a) $\mathrm{P}=\mathrm{HI} \Rightarrow \mathrm{P}_{1}=7(\mathrm{H})$ and $\mathrm{P}_{2}=8(\mathrm{I})$
$\mathrm{C}_{1}=\left(\mathrm{a} \cdot \mathrm{P}_{1}+\mathrm{b}\right) \bmod 26=(11 \mathrm{x} 7+5) \bmod 26=82 \bmod 26=4=\mathrm{E}$
$\mathrm{C}_{2}=\left(\mathrm{a} \cdot \mathrm{P}_{2}+\mathrm{b}\right) \bmod 26=(11 \mathrm{x} 8+5) \bmod 26=93 \bmod 26=15=\mathrm{P}$
$\Rightarrow \mathrm{C}=\mathrm{EP} \quad 10$ POINTS
b) $\mathrm{C}=\mathrm{ME} \Rightarrow \mathrm{C}_{1}=12(\mathrm{M})$ and $\mathrm{C}_{2}=4(\mathrm{E})$

By inspection: $\mathrm{a}^{-1}=19$
Check: axa $^{-1} \bmod 26=11 x 19 \bmod 26=209 \bmod 26=1 \checkmark$
$\mathrm{P}_{1}=\mathrm{a}^{-1}\left(\mathrm{C}_{1}-\mathrm{b}\right) \bmod 26=19(12-5) \bmod 26=3=\mathrm{D}$
$P_{2}=\mathrm{a}^{-1}\left(\mathrm{C}_{2}-\mathrm{b}\right) \bmod 26=19(4-5) \bmod 26=7=\mathrm{H}$
$\Rightarrow \mathbf{P}=\mathrm{DH} \quad 10$ POINTS

Exercise \#2

We know that the most frequent letters of the English alphabet are E and T. After doing Affine encryption to a plaintext, the most frequent letters became J and k. Break the code by finding the values of a and b.
$\mathrm{E}=4$ becomes $\mathrm{J}=9$
$\mathrm{T}=19$ becomes $\mathrm{K}=10$
$\mathrm{C}=(\mathrm{a} \cdot \mathrm{P}+\mathrm{b}) \bmod 26$
$\Rightarrow 9=(4 a+b) \bmod 26 \quad$ eq. 1
$\& 10=(19 a+b) \bmod 26$ eq. 2
Subtract eq. 1 from eq. 2 to remove b:
$1=(15 a) \bmod 26$
By inspection: $\mathbf{a}=7 \quad 10$ POINTS
Check: $15 x 7 \bmod 26=105 \bmod 26=1 \checkmark$
Get b from eq. 1:
$9=(4 x 7+b) \bmod 26$
By inspection: $\mathbf{b}=\mathbf{7} \quad 10$ POINTS
Check: $(4 x 7+7) \bmod 26=35 \bmod 26=9 \checkmark$

Exercise \#3

Use Playfair code to encrypt the message "HELLOS" using the keyword "homework".
The matrix is: $\quad 10$ POINTS

\mathbf{H}	\mathbf{O}	\mathbf{M}	\mathbf{E}	\mathbf{W}
\mathbf{R}	\mathbf{K}	\mathbf{A}	\mathbf{B}	\mathbf{C}
\mathbf{D}	\mathbf{F}	\mathbf{G}	\mathbf{I} / \mathbf{J}	\mathbf{L}
\mathbf{N}	\mathbf{P}	\mathbf{Q}	\mathbf{S}	\mathbf{T}
\mathbf{U}	\mathbf{V}	\mathbf{X}	\mathbf{Y}	\mathbf{Z}

HE LX LO SX
HE becomes OW
LX becomes GZ
LO becomes FW
SX becomes QY
$C=0 W G Z F W Q Y \quad 10$ POINTS

Exercise \#4

Using Vigenere cipher, encrypt the word "assignment" using the key "cryptology".

Key	c	r	y	p	t	o	l	o	g	y	
Plain	a	s	s	I	g	n	m	e	n	t	
Cipher	c	j	\mathbf{q}	\mathbf{x}	z	b	\mathbf{x}	\mathbf{s}	\mathbf{t}	r	10 POINTS

Exercise \#5

Use the Hill Cipher with key $K=\left[\begin{array}{cc}5 & 8 \\ 17 & 3\end{array}\right]$ in order to encrypt "DOGS". Use the same cipher to decrypt "PLAN".
a) $\mathrm{D}=3$
$0=14$
$\mathrm{G}=6$
$S=18$

$$
\begin{aligned}
& \mathrm{C}_{1}=\mathrm{K} \cdot \mathrm{P}_{1} \bmod 26=\left[\begin{array}{cc}
5 & 8 \\
17 & 3
\end{array}\right]\left[\begin{array}{c}
3 \\
14
\end{array}\right]=\left[\begin{array}{c}
127 \\
93
\end{array}\right] \bmod 26=\left[\begin{array}{l}
23 \\
15
\end{array}\right]=\begin{array}{l}
\mathrm{X} \\
\mathrm{P}
\end{array} \\
& \mathrm{C}_{2}=\text { K.P } P_{2} \bmod 26=\left[\begin{array}{cc}
5 & 8 \\
17 & 3
\end{array}\right]\left[\begin{array}{c}
6 \\
18
\end{array}\right]=\left[\begin{array}{c}
174 \\
156
\end{array}\right] \bmod 26=\left[\begin{array}{c}
18 \\
0
\end{array}\right]=\begin{array}{c}
\mathrm{S} \\
\mathrm{~A}
\end{array} \\
& \Rightarrow \mathrm{C}=\mathrm{XPSA} \\
& 10 \text { POINTS }
\end{aligned}
$$

b) $\mathrm{P}=15$
$\mathrm{L}=11$
A $=0$
$\mathrm{N}=13$

$$
\begin{aligned}
& K=\left[\begin{array}{cc}
5 & 8 \\
17 & 3
\end{array}\right] \\
& \operatorname{Det}(K)=5 \times 3-8 \times 17 \bmod 26=-121 \bmod 26=9
\end{aligned}
$$

By inspection: $9^{-1}=3$
Check: $3 \mathrm{x} 9 \bmod 26=27 \bmod 26=1 \checkmark$
$\Rightarrow \mathrm{K}^{-1}=3\left[\begin{array}{cc}3 & -8 \\ -17 & 5\end{array}\right] \bmod 26=\left[\begin{array}{cc}9 & -24 \\ -51 & 15\end{array}\right] \bmod 26=\left[\begin{array}{cc}9 & 2 \\ 1 & 15\end{array}\right]$
$P_{1}=K^{-1} \mathrm{C}_{1} \bmod 26=\left[\begin{array}{cc}9 & 2 \\ 1 & 15\end{array}\right]\left[\begin{array}{l}15 \\ 11\end{array}\right]=\left[\begin{array}{l}157 \\ 180\end{array}\right] \bmod 26=\left[\begin{array}{c}1 \\ 24\end{array}\right]=\begin{aligned} & \mathrm{B} \\ & \mathrm{Y}\end{aligned}$
$P_{2}=K^{-1} \mathrm{C}_{2} \bmod 26=\left[\begin{array}{cc}9 & 2 \\ 1 & 15\end{array}\right]\left[\begin{array}{c}0 \\ 13\end{array}\right]=\left[\begin{array}{c}26 \\ 195\end{array}\right] \bmod 26=\left[\begin{array}{c}0 \\ 13\end{array}\right]=\begin{aligned} & A \\ & N\end{aligned}$
$\Rightarrow \mathbf{P}=\mathrm{BYAN}$
10 POINTS

