Summations
Summations are just addition. Addition, subtraction, multiplication, and division constitute the math of what follows, and the properties of these operations are relatively simple and have been known to us for quite some time.
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If, for instance, we have n = 3, then we have [image: image2.wmf]å
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No, because 
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But someone might say, “How can [image: image7.wmf]å
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be the same? One of them contains an i and the other contains a j.” The answer is that the index is just a way of keeping a list. If the index is i in one case and j in the other, it does not necessarily mean that the two expressions we are dealing with are different. They might be the same. It depends on the details involved (namely the form of the expression, the staring value of the index, and the ending value of the index). If you are in doubt, write it out. In other words, write [image: image9.wmf]å
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. This might help us see what is really going on.
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? First, i takes on value 1. With i = 1, j takes on the values 1, 2, and 3. Then, i takes on value 2. With i = 2, j takes on the values 1, 2, and 3. Then the same occurs with i = 3. The result is that [image: image12.wmf]å
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is equal to the sum of the terms in bold in the following table:


      j
    1
    2
     3





i


1
  a1a1
  a1a2
  a1a3


2
  a2a1
  a2a2
  a2a3


3
  a3a1
  a3a2
  a3a3
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. By comparing with the above, we should be able to figure out that [image: image16.wmf]å
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Is there a difference between [image: image18.wmf]2
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. Given the above, we can say that
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consists completely of “own products”; it consists of terms like a1 multiplied by itself. [image: image24.wmf]2
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consists of own products and cross products (terms like a1a2, which involve the product of two things which bear different subscripts).
The relationship between [image: image25.wmf]2
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 can be expressed as follows:
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In terms of the table above, 
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is equal to the sum of the terms along the principal diagonal, while 
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 (call this #)
   
[image: image33.wmf]j

i

¹


is the sum of the elements which are off the principal diagonal. Note that the # is equal to 2a1a2 + 2a1a3 + 2a2a3. How does # generate (among other things) the term 2a1a2? # generates an a1a2 (when i = 1 and j = 2) and an a2a1 (when i = 2 and 
j = 1), which together yield 2a1a2. Note that # consists entirely of cross products.
Consider the following four expressions

1) 
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3) 
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You should be able to show that expressions 1, 2, and 4 are equal, whereas expression 3 is different. Expression 3 only contains own products, while expressions 1, 2, and 4 each contain own products and cross products. Note that a term like X2u2 is called an own product, because the subscripts on the X and the u are the same.

Note that in a double summation, the indices could have different starting values and/or different ending values.

As a default, a summation with no index, starting value, or ending value will be assumed to have index i, starting value 1, and ending value n,  so that 
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. In particular, if n = 2, we have 
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Note that 
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. In particular, if n = 2, we have 
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Note that 
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Note that 
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. In fact, this is a case of summing fractions which already have the same common denominator
Note that [image: image46.wmf]å
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Note that 
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(Xj is a common factor, since it is the same in every term of the summation). For instance, if j = 5, we have
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, the index of X is subject to the summation, which makes the X have different subscripts in every term of the summation. In 
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, the index of X is not subject to the summation, which implies that the X has the same subscript throughout. If you say (mistakenly) that 
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, you are assuming that Xi is a common factor in the expression [image: image56.wmf]å
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With regard to double summations, note that 
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. Show that this is true by writing out each of the two expressions involved. The key to this relationship is that the summation signs must be switched in their entirety (in other words, switch one “summation-index-starting value-ending value” for the other “summation-index-starting value-ending value”).

Finally, some brief, non-summation related remarks:

Note that 
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Note that, with a ( 0,  [image: image61.wmf]0
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 is undefined. One way to understand this is as follows. Assume that [image: image62.wmf]0
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 =  x, where x is some number. Cross-multiplying leads to a = (0)(x) = 0, which is a contradiction. Therefore, no number x exists such that [image: image63.wmf]0
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 is equal to infinity” is  a common mistake. Division by a number tending to 0 yields a number tending to (. Division by 0 itself does not lead to any result and is therefore called “undefined”.

Note that 
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 is indeterminate. Assume that 
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 =  x, where x is some number. Cross-multiplying leads to 0 = (0)(x) = 0, which is satisfied for any x. In the undefined case, the division yields no answer. Here, it yields an infinite number of possible answers.

If, in some kind of exercise (or derivation), we encounter an expression which is either undefined or indeterminate, most of the time we should conclude that there is some problem- some mistake- in our work. This could be a simple, mathematical mistake. Or it could be that our exercise (or derivation) has some fundamental problem with it- that it is badly posed or that, for some reason, we do not have enough information to carry out numerical calculations. 
PAGE  
4

_1347048389.unknown

_1347076025.unknown

_1347076635.unknown

_1359353474.unknown

_1359353654.unknown

_1347077025.unknown

_1347077443.unknown

_1347077470.unknown

_1347076946.unknown

_1347076348.unknown

_1347076446.unknown

_1347076252.unknown

_1347048699.unknown

_1347075169.unknown

_1347075305.unknown

_1347049532.unknown

_1347048597.unknown

_1347048679.unknown

_1347048502.unknown

_1347039156.unknown

_1347043624.unknown

_1347043683.unknown

_1347043143.unknown

_1347033086.unknown

_1347036260.unknown

_1347037155.unknown

_1347032855.unknown

