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1 Introduction

Before the beginning Quantum Mechanics, there were many phenomena that needed explanation as
the theories of the time failed to predict them, or to explain them.

Blackbody Radiation: A blackbody refers to an opaque object that emits thermal radiation. The
ultraviolet catastrophe was the prediction of late 19th century/early 20th century classical physics
that an ideal black body at thermal equilibrium will emit radiation in all frequency ranges, emitting
more energy as the frequency increases. By calculating the total amount of radiated energy a
blackbody would release an infinite amount of energy, contradicting the principles of conservation of
energy. Planck solved this issue using statistical mechanics on the 7th of October 1900. He postulated
that electromagnetic radiation can only be emitted or absorbed in discrete packets, called quanta,
such that

EQuanta = h̄w = hf

where h is Planck’s constant ( h = 6.6260755x10−34Js ), f is the frequency of light, w is the angular
frequency of light, and h̄ = h

2 .
Another issue was the photoelectric effect, the emission of electrons or other free carriers when

light is shone onto a material. In 1905, Albert Einstein used Planck’s postulate to explain this
phenomena. A photon above a threshold frequency has the required energy to eject a single electron,
creating the observed effect. This discovery led to the quantum revolution in physics and earned
Einstein the Nobel Prize in Physics in 1921.

E = Φ +
m.v2

2

⇒ hν = Φ +
m.v2

2

where E is the energy of the EM wave, Φ the energy of dislocation and 0.5m.v2 the energy of
propulsion.

The last issue to mention here is the spectral lines. Johann Balmer discovered in 1885 that the
four visible lines of hydrogen were part of a series that could be expressed in terms of integers.

λ = C(
m2

m2 − z2
)

This was followed a few years later by the Rydberg formula, which described additional series of
lines.
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1

n2
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n2
2
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2 The Atomic Model

Rutherford noticed the similarity between the electric and gravitational forces:

F = k0
q1q2

r2
and F = G

m1m2

r2

and so he concluded that the electrons inside the atom will orbit around the nucleus. But this model
was incomplete because according to Maxwell, the electron would collapse to the nuclei in less than
a second. So Maxwell’s equations broke down at the subatomic levels.

Bohr introduced a new model:

• The electrons move around the nucleus in stationary states;

• an electron moves from one state to another, the energy lost or gained is done so only in very
specific amounts of energy;

• Each line in a spectrum is produced when an electron moves from one stationary state to
another.

from 1
λ = Cte( 1

n2
1
− 1

n2
2
) and E = hc

λ he concluded that

hν = Ei − Ef ⇒
hc

λ
= Ei − Ef

Bohr first hypothesized that the electron’s angular momentum was quantized. In an hydrogen
atom, the centripetal force is being supplied by the coulomb force between it and the proton in the
hydrogen nucleus.

Fcentripetal = Felectrostatic

⇒ mv2
n

rn
= |k−e(Ze)

r2
n

|

⇒ mv2
n = k

Ze2

rn

Here Z is the number of protons, e is the elementary charge,
************************************MISSSING CALCULATION *************************************

3 Wave-particle duality extension.

Prince De Broglie was a student of Einstein. He proposed the extension of the wave-particle duality
from the EM waves to all matter. Fitting de Broglie waves around a circle gives Bohr’s quantization
condition

nλ = 2πrn ⇒ prn = n
h

2π

This wave will be moving at a group velocity of

vg =
w

k

and we have that

E = h̄w =
mv2

2
and P = h̄k = mv
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So we can get the group velocity of the wave of the corresponding particle

dw

dk
=
dE

dP
=

d

dP
(
P 2

2m
) = v

Also we could have done it like that:

2E
dE

dP
= wc2P

⇒ dE

dP
=
c2P

E
=
mvc2

mc2
= v

And so that is how we can link the velocity of particles to the group velocity.
Now we try to solve the wave differential equation for de Broglie waves. we take the wave solution

ψ(x) = ei(kx−wt)

this solution should describe a particle with energy E and momenta P.

⇒ ψ(x) = e
i
h̄ (Px−Et)

Now we differentiate:

∂ψ

∂x
=
i

h̄
Pψ

∂2ψ

∂x2
= −P

2

h̄2 ψ

∂2ψ

∂t2
= −E

2

h̄2 ψ

by substitution in the D.E. we get E2 = P 2v2

This equation only worked for photons, which were known to have a wave-particle duality, and
so could not be extended to massive particles.

4 Schrodinger’s equation

So now we want another wave equation, one that is not relativistic, meaning that the derivatives of
x are more than those of t, because time and space are not on equal footing.

So we propose:
∂2ψ

∂x2
+A

∂ψ

∂t
= 0

⇒ −P
2

h̄2 ψ +A(
−iE
h̄

ψ) = 0

⇒ −P
2

h̄
= AiE and we have that 2Em = P 2

⇒ A = −2m

ih̄
=

2im

h̄

3



⇒ ∂2ψ

∂x2
+

2im

h̄

∂ψ

∂t
= 0

⇒ ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂x2

And so we get Schrodinger’s equation:

ih̄
∂ψ

∂t
= (− h̄2

2m
∇2 + v)ψ

Note: The relativistic equation turned out to be:

∂2ψ

∂x2
− 1

c2
∂2ψ

∂t2
− (

mc

h̄
)2ψ = 0 (not relevant to this chapter)

So what is ψ ? It was a complex number with no physical meaning.
Max Born’s interpretation of the wave function: | ψ |2 dx is the probability of finding the particle

described by the wave function ψ between x and (x+ dx). So the normalisation condition:∫
allspace

| ψ |2 dx = 1

Hamiltonian in Schrodinger’s Equation:

By analogy with classical mechanics, the Hamiltonian is commonly expressed as the sum of operators
corresponding to the kinetic and potential energies of a system in the form:

Ĥ = T̂ + V̂

Where

V̂ = V and T̂ =
p̂.p̂

2m
=

p̂2

2m
=
−h̄2

2m
∇2

because in the the case of one particle in one dimension

p̂ = −ih̄ ∂

∂x

so for example:

p̂φ = −ih̄∂φ
∂x

So now the Hamiltonian becomes

Ĥ =
−h̄2

2m
∇2 + V (x)

So Schrodinger’s equation can be written as

ih̄
∂ψ

∂t
= Ĥψ
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Solving the Schrodinger equation:

ih̄
∂ψ

∂t
= (− h̄2

2m

∂2

∂x2
+ v)ψ(x; t)

We separate the variables
ψ(x; t) = φ(x) χ(t)

Now we replace it in the D.E. and we divide by ψ(x; t) to get the following equation:

1

χ
ih̄
∂χ

∂t
= (
−h̄2

2m

∂2φ

∂x2
)

1

φ
+ V

So the equation we have now is separated and each side is equal to a constant E, the separation
constant. So we can write:

−h̄2

2m

∂2φ

∂x2
+ V φ = Eφ

and

ih̄
∂χ

∂t
= Eχ

Applying Schrodinger’s Equation:

Let there be a particle inside a box, the particle cannot be outside and inside V = 0. The time
independent Schrodinger equation:

−h̄2

2m

∂2φ

∂x2
= Eφ

So we let φ = A sin(Kx) +B cos(Kx)

⇒ ∂φ

∂x
= A K cos(Kx)−B K sin(Kx)

⇒ ∂2φ

∂x2
= −A K2 sin(Kx)−B K2 cos(Kx) = −K2φ

⇒ K2 =
2mE

h̄2

with E the energy of the particle. Now we need boundary conditions. we have that φ(a) = φ(0) = 0
so we can conclude that φ(0) = B = 0

⇒ φ = A sin(Kx)

but also φ(a) = A sin(Ka) = 0, and we know that A 6= 0 because we know that there is something
inside that box

⇒ K a = n π

and we have k = nπ
a and E = h̄2K2

2m

⇒ E = (
h̄2

2m

π2

a2
)n2

And so we get the quantized energy levels of a particle inside a box. The time dependent equation

can be solved easily and we can get χ = e
−iEt

h̄ and now we can write:

ψn = (A sin(
nπ

a
x)) e

−iEt
h̄
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The normalisation condition can be used now to find the value of A:∫
allspace

| ψ |2 dx = 1

And we have that
| e−ic |2= 1∫ a

0

A2 sin2(
nπ

a
)xdx = 1

since sin(n2π) = 0 we get that A =
√

2
a

5 The Rules of Quantum mechanics

• The Quantum state of a system is represented by a wave function ψ(x), where ψ(x) is complex
and can be normalised

• Superposition: if ψ1 and ψ2 are solutions

⇒ ψ = α1 ψ1 + α2 ψ2

is also a solution and it has to be normalised. So we can also get:

ψ(x; t) =
∑

Cnφn(x)e
−iEnt

h̄

• Any physical quantity that can be measured (i.e. observables) is represented by a linear
differential non-adjoint operator.

• The only possible result of a physical measurement of an observable is one of the eigenvalues
of the self-adjoint operator representing this observable.

Exercise: The eigenvalues of Lz: In classical mechanics the definition of the angular mo-
mentum is

~L = ~r × ~P

So we have by the cross product:
Lx = yPz − zPy
Ly = zPx − xPz
Lz = xPy − yPx

We want to find the eigenvalues of L̂z

L̂z = −ih̄(x
∂

∂y
− y ∂

∂x
)

In spherical coordinates:

L̂z = −ih̄(
∂

∂φ
)

(the meaning of φ here is different because we reverse them in Physics)
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So now we search for the eigenvalues:

L̂zu = λu

⇒ −ih̄ ∂u
∂φ

= λu

⇒ −ih̄ ∂u
∂φ
− λu = 0

⇒ +ih̄
∂u

∂φ
+ λu = 0

⇒ ∂u

∂φ
+
λ

ih̄
u = 0

So now let u = eiαφ, we replace it in the equation:

⇒ ∂u

∂φ
= iαeiαφ

⇒ −ih̄(iα)eiαφ = λeiαφ

⇒ λ = αh̄

We now need some boundary condition:
********** exercie to be completted ******************

6 Solving The Eigenvalue Equation for an Operator A:

We have Âψn = λnψn , We get λn and those will be the eigenvalues. And ψn has to be normalised:∫
| ψn |2= 1

So with the Schrodinger equation we get the wave function and we expand it in terms of cnψn
Wave function :

∑
cnψn

and so P =| cn |2, the probabilities.

and the average will be
∑
| cn |2 λn =

∫
ψ∗Âψ

And Hamiltonians with expectation values are:

∂

∂t
〈x〉 =

〈P 〉
m

and
∂

∂t
〈P 〉 = −〈dV

dx
〉

With V the potential energy.

7 The Harmonic Oscillator

In the harmonic oscillator we have the potential energy:

V =
1

2
mw2x2 (comparing with usual classic oscillators V =

1

2
Kx2 K

m
= w2)
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We have a particle in a space with V , and with the following hamiltonian:

H =
p2

2m
+ V (x) =

p2

2m
+

1

2
mw2x2

⇒ Ĥ =
−h̄2

2m

∂2

∂x2
+

1

2
mw2x2

and here t is not expressed explicitly in V (x) so it is time independent. Now the Eigenvalue equation
for the Hamiltonian is

Ĥψ = Eψ

⇒ − h̄2

2m

∂2ψ

∂x2
+ 1/2mw2x2ψ = Eψ

Now we assume that ψ = eαx
2

and by substitution we get:

− h̄2

2m
(2αeαx

2

+ 4α2x2eαx
2

) + 1/2mw2x2eαx
2

= Eeαx
2

(1)

⇒ − h̄2

2m
2α = E ⇒ E = −αh̄

2

m
(2)

Also 4α2h̄2 = m2w2 (3)

⇒ α = ±mw
wh̄

(4)

We take alpha as negative so that it can cancel at infinity.

⇒ E =
1

2
h̄w and e

−mwx2

2h̄

The function transforms to :

ψ = Ae
−mwx2

2h̄

with A the normalisation function.
Now we try another solution: ψ = xeαx

2

, and after doing the same operations we get ψ1 =

Bxe
−mwx2

2h̄ . We can do this forever, because there is an infinite number of solution. But the general
solution involves the Hermite Polynomials (Pn(x)), such that:

ψn = Pn(x)e
−mwx2

2h̄

8 Various Examples and Exercises

Those are to be found in the notes.

9 Used material

9.1 Wave Mechanics

The wave function

Ψ(x) = A sin(Kx− wt) = A sin(
2π

λ
(x− vt)) = ei(kx−wt)
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Where v is the propagation velocity, w is the angular frequency w = v2π
λ = 2πν , and A is the

amplitude. And we also have
∂2ψ

∂x2
− 1

v2

∂2ψ

∂t2
(5)

Also we can describe the movement of the whole phase or group of waves ( or wave packets ) by the
group velocity

vg =
dw

dk

9.2 Eigenvalues

A number ”a” is an eigenvalue of a differential operator Â if it satisfies the differential equation:

Âu(x) = au(x)

If A has un(x) as eigenfunctions with eigenvalues λn and suppose the wave function of the system
is given by ψ(x) then

ψ(x) =
∑
n

cnun(x) with Prob(λn) =| cn |2

9.3 Hermitian operators

A self-adjoint (Hermitian) operator is an operator, such that:∫ −∞
∞

[Âψ(x)]∗ φ(x)dx =

∫ −∞
∞

ψ∗(x) [Âφ(x)]dx

9.4 Average of an observable

To find the average value of an observable after multiple observations, we do this calculation:

〈A〉 =

∫
allspace

ψ∗Âψ =
∑
i

λi | ci |2

9.5 Hermite Polynomials

A hermite polynomial is the one that is the sum of a certain order of x multiplied by coefficients,
but if the order is odd the only possible orders are odd, and if it even, the same is applied.
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