

AUB Physics Department

Final Exam

Physics 212

June 20, 1995

Name:

Useful information:

$$k = 9x10^9 \text{ J.m/C}$$

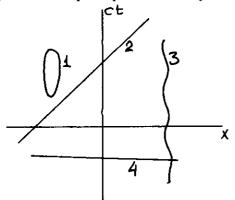
$$e = 1.6x10^{-19} C$$

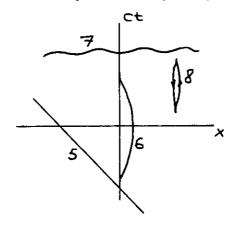
$$k = 9x10^9 \text{ J.m/C}$$
 $e = 1.6x10^{-19} \text{ C}$ $m_e = 0.511 \text{ MeV/c}^2$ $\mu_e = 5.79 \cdot 10^{-5} \text{ eV/T}$

hc = 12400 eV.Å
$$\hbar$$
=6.58x10⁻¹⁶ eV.s e/ m_e =1.759x10¹¹ C/kg

 $m_n = 1.008666 u$

$$m_p = 1.007277 u$$


$$1 u = 931.5 \text{ MeV/c}^2$$


Boltzmann constant k. = $1.38 \ 10^{-23} \ J/K$.

Some lighter elements: 1H, 2He, 3Li, 4Be, 5B, 6C, 7N, 8O, 9F

Part A.

- 1. The following space-time diagrams show several examples of world lines. Indicate on the diagrams, which of the lines
- a) belong to massive particles
- b) belong to massless particles
- c) violate the principle of causality or the postulates of the special relativity theory

- 2. Mark the incorrect statement
 - a) The characteristic X-ray lines of an element have wavelengths that are inversely proportional to the voltage across the X-ray tube
 - b) If the voltage across an X-ray tube is increased, the short wavelength cutoff λ_{min} of the continuous X-ray spectrum decreases
 - c) A characteristic X-ray line cannot have wavelength shorter than the cutoff limit λ_{min} of the continuous spectrum
 - d) Continuous X-ray spectrum will be produced by any charged body subjected to a rapid acceleration or deceleration
 - e) both a) and d)

VI. The principal source of energy in older stars is the carbon cycle. This cycle involves six reactions, which are partially given below:

1)
$${}^{1}H + {}^{12}C \rightarrow \underline{\hspace{1cm}} + \gamma$$
2) $\longrightarrow {}^{13}C + e^{+} + \nu$
3) ${}^{1}H + {}^{13}C \rightarrow \underline{\hspace{1cm}} + \gamma$
4) ${}^{1}H + \underline{\hspace{1cm}} \rightarrow {}^{15}O + \gamma$
5) ${}^{15}O \rightarrow \underline{\hspace{1cm}} + e^{+} + \nu$
6) ${}^{1}H + \underline{\hspace{1cm}} \rightarrow {}^{12}C + {}^{4}He$

- A. Fill in the blanks in these reactions.
- B. Indicate which reactions involve weak interaction
- C. Carbon cycle requires higher temperatures than the proton-proton cycle in the sun.

Roughly, how much higher would you expect the required temperature to be as compared to the temperature needed for the p-p cycle?

In order to estimate the temperature, answer the following questions first: What is the role of temperature in fusion reactions? In the proton-proton cycle,

$${}^{1}H + {}^{1}H \rightarrow {}^{2}H + {}^{1}H + e^{+} + v$$

$${}^{2}H + {}^{3}He \rightarrow {}^{3}He + \gamma$$

$${}^{3}He + {}^{3}He \rightarrow {}^{4}He + {}^{1}H + {}^{1}H.$$

it is the last reaction that is most temperature sensitive. Why?

Which is the most temperature-sensitive reaction in the carbon cycle?

- 3. Consider the electronic states in a hydrogen atom. Mark the incorrect statement (if any)
 - a) There are 2 degenerate states with the same energy in the level with the principal quantum number n=1.
 - b) An electron in an s-state (1=0) will not interact with the external magnetic field
 - c) The average kinetic energy of the electron in the ground state is 13.6 eV
 - d) In the 2p state, the z-component of the orbital angular momentum can have three different values
 - 4. It follows from the uncertainty principle that
- 4 a) each particle must have an antiparticle
 - b) even at absolute zero atoms in a crystalline lattice have to vibrate with the amplitude of at least kT/h
 - c) the values of quantum numbers n and l for an electron in the hydrogen atom cannot be specified with arbitrary precision
 - d) electron in the hydrogen atom cannot move along elliptical trajectories
 - e) none of the above

Part B

- I. A particle of unknown mass M decays into two particles of masses $m_1 = 0.5 \ GeV/c^2$ and $m_2 = 1.0 \ GeV/c^2$ whose momenta are measured to be $p_1 = 2.0 \ GeV/c$, directed along the Y-axis, and $p_2 = 1.5 \ GeV/c$ directed along the X-axis. Find the mass of the unknown particle and its speed.
- II. A group of π -mesons is observed traveling at a speed 0.8 c with respect to the laboratory. If the proper half-life of π -mesons is 18 ns. and there were initially 32000 of then, how many will be left after they have traveled 36 m according to the stationary observer?