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4.1

4.2

Fundamental Equations of
Thermodynamics

One mole of nitrogen is allowed to expand from 0. 5to 10 L. Calculate the change
in entropy using (a) the ideal gas law and (b) the van der Waals equation.

SOLUTION

@ AS=RWn(V2/Vy)
=(8.314] K-1 mol'l) In(10/0.5)
=24.91 JK-1 mol-!

®  AS=RIn[(V2-b)(V1-b)]
= (8.314 J K- mol-)) In[
=25.55J K1 mol-!

(10-0. 039)]
(0.5 - 0.039)

Derive the relation for Cp - Cy for a gas that follows van der Waals' equation.
SOLUTION

- - - V\ 2(0P
Cp-Cy =T Vo/x=- T(—a—T- (——
P —

The van der Waals equation can be written in the following form:

PV bP a ab
— — +_————-
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D) 2 2

RV R¥2
Ehmmatmg P with the van der Waals equation yields
al= _T_‘_’_- - ‘ 7_ b)
V-b RV2

K is calculated from

oP RT
(‘_—) ST T 2_—a

av (V-2 W3
Cp-Cy o

1 D~ (V-b)?
"RT _
V3

Earlier we derived the expression for the entropy of an ideal gas as a function of T
and P. Now that we have the Maxwell relations, derive the expression for dS for any
fluid.

SOLUTION
dS = (08/0T)p dT + (9S/9P)T dP

= (Cp/T) dT - (3V/dT)p dP
= (CpIT) dT - aVdP

What is the change in molar entropy of liquid benzene at 25 °C when the pressure is
raised from 1 to 1000 bar? The coefficient of thermal expansion eris 1.237 x 10-3
K-1, the density is 0.879 g cm3, and the molar mass is 78.11 g mol-1.

SOLUTION

Equation 4.50 can be written as

&, = @),
— =-\— = - VO
T  dT’p
where a is defined by equation 1.36.
AS = - VaAP
_ 78.11 gmol” (102 m cm-1)3 (1.237 x 10-3 K-1)(1000 bar)

" 0.879 gcm?3
=-10.99 J K-1 mol-!
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Derive the expression for Cp- Cyfora gas with the following equation of state.

[P+ (@/V2)]V=RT
SOLUTION

Cp-Cy =T Vo2/k=- T(g—‘;)P (__

av T

What is the difference between the molar heat capacity of iron at constant pressure
and constant volume at 25 °C? Given: & =35.1 x 10-6 K-l ¥ =0.52 x 106
bar!, and the density is 7.86 g cm3.

SOLUTION

- 55847 gmoll 711 ~m3 ]

V= = =7.11 x 106 m3 mol-
7.86gcm3 (102 cm mel)3 7.11 x 10-6 m3 mol

Ep - E’V = 2TV/x
(35 1 x 106 K-1)2(298 K)(7.11 x 106 m3 mol-1)(105 Pa bar1)
(0.52 x 106 bar!)

= 0.51 J K1 mol-!
In equation 1.27 we saw that the compressibility factor of a van der Waals gas can
be written as

_ 1 a
Z_1+I—ﬁ(b-ﬁ)P+

where terms in P2 and higher are negligible. (a) To this degree of approximation,
derive the expression for (0H/OP)7 for a van der Waals gas. (b) Calculate (OH/OP)T
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for CO(g) in J bar'l mol-! at 298 K. Given: a =3.640 L2 bar mol-2 and b =

0.04267 L mol-1.
SOLUTION

@)  (OHIOP)r=V - T@VIdT)p
PV=RT+ (b-a/RT)P

V= RT/IP+b-a/RT
(dV/I9T)p = RIP + alRT?

V-RT/P- a/RT
=b - 2a/RT

(aH/ oP)T =

()  (9H/@P)r=0.04267 L mol'! -

=-0.251 L mol-!

nAms T 11

2(3.64 L2 bar mol-2)

=001 L barJ-1

(0.08314 L bar K-! mol-1)(298 K)

=-25 J bar ! mol-!

Since R = 8.314 J K-! mol-! = 0.08314 L bar K-! mol-
Therefore, 1 J =0.01 L bar or 0.01 L bar JFl=1.

Derive the expression for (QU/0V)r (the internal pressure) for a gas following the

virial equation with Z=1+ B/V.
SOLUTION

p_RT, BRT

v ow
&5); =

_R, BR RT(
— oT’y
|4 V

@UV) = T(aP

_ RT%(9
(aT ;
V2

In Section 3.9 we calculated that the enthalpy of freezing water at - 10 °C is -5619 J
mol-1, and we calculated that the entropy of freezing water is - 20.54 J K-1 mol-! at -

10 °C. What is the Gibbs energy of freezing water at - 10 °C?

SOLUTION
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AGO = AHO - TAS©
=-5619 J mol-! - (263.15 K)(- 20.54 J K- mol'l)
=-213.9 I mol-1

This is negative, as expected for a spontaneous process at constant 7 and P. If the

water was at -10 °C in an isolated system, the temperature would rise, but part of the
water would freeze. In this case the increase in order due to the crystallization of
part of the ice is more than compensated for by the increase in disorder of the
system as a whole by the rise in temperature.

(a) Integrate the Gibbs-Helmholtz equation to obtain an expression for AG, at
temperature T in terms of AGj at T}, assuming AH is independent of temperature.
(b) Obtain an expression for AG, using the more accurate approximation that AH =
AHy + (T - T1)ACp where T1 is an arbitrary reference temperature.

SOLUTION
(a) Using equation 4.62

AGYT T,
I d(AG/T) = -
AGYT T,
AG 4G (L. L
., T T, Ty

AG = AG1T2/T1 + AH[1 - (T»/T)]

i (T-Ty)
b = | — \£-11)
(b) fd(AG/T) J. o) dT + ACPJ‘ o) dr
AGy AG 1 1 T 1 1
-—Tz——'—Tl—=-AH T, +ACPln(TT) -T]ACP(T—I-T—Z
AG3 = AGTo/T) + (AH} + T)\ACp) (1 - % )+ T>ACp In %)

When a liquid is compressed its Gibbs energy is increased. To a first _
approximation the increase in molar Gibbs energy can be calculated using (0G/dP)r
=V, assuming a constant molar volume. What is the change in the molar Gibbs
energy for liquid water when it is compressed to 1000 bar?

SOLUTION
G _ Py _

f dG = I VdP
- P
Gy

A G =V AP = (18 x 106 m"3 mol-1)(999 bar)(105 Pa bar 1)
= 1.8 kJ mol-1
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An ideal gas is allowed to expand reversibly and isothermally (25 °C) from a
pressure of 1 bar to a pressure of 0.1 bar. (a) What is the change in molar Gibbs
energy? (b) What would be the change in molar Gibbs energy if the process
occurred irreversibly?

SOLUTION

3G\ - RT
(a) (a_P . V="p
AG =RTIn % = (8.314 J K-! mol'1)(298.15K) In 0.1
= - 5708 J mol-! '

(b) AG = - 5708 J mol-! because G is a state function and depends only on the
initial state and the final state.

The standard entropy of O2(g) at 1 bar is listed in Appendix C.2 as 205.138 JK-1
mol-! at 298 K, and the standard Gibbs energy of formation is listed as 0 kJ mol-!
Assuming Oz is an ideal gas, what will be the molar entropy and molar Gibbs
energy of formation at 10U bar?

SOLUTION

S=S°-Rln % = 205.137 - 8.314 In 100 = 166.848 J K-1 mol-!
AfGO = 0 + RT In (P/P°) = (8.314 x 10°3)(298) In 100 = 11.41 kJ mol-!

Helium is compressed isothermally and reversibly at 100 °C from a pressure of 2 to
10 bar. Calculate (a) g per mole, (b) w per mole, (¢) AG, (d) AA, (e) AH, (f) AU, and
(g) AS, assuming heltum 18 an 1geal gas.

SOLUTION

(@) AU=q+w=0
—w= Py
q---w---RTlnP1

=-(8.314 T K- mol'1)(373.15K) In %)_l%r’{ =- 4993 J mol!

(b)y w=-g=4993] mol-1

- Py P
(©) AG = j‘ VdP=RT In Fl— = 4993 J mol-!
P :

(d)  AA=wmax =4993 J mol'!

€ AH=AU+A(PV)=0
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AU=0

- - ! 4933 J mol-!
_Af L _g. 3933 molt 1 mal-1
AS=AH T 0 37315K - 13.38 J K-! mol

Toluene is vaporized at its boiling point, 111 °C. The heat of vaporization at this
temperature is 361.9 J g-1. For the vaporization of toluene, calculate (a) w per mole,
(b) g per mole, (c) AH, (d) AU, (e) AG, and (f) AS.

SOLUTION

(a)

(b)
(©)
(d)
(e)

®

Assuming that toluene vapor is an ideal gas and that the volume of the liquid
is negligible, the work on the toluene is

w=- PAV=-RT =- (8.314 J K1 mol-1)(384 K)
= -3193 J mol!

gp=AH=(361.97 g1)(92.13 g mol-1) = 33,340 J mol-L.
AH = 33,340 J mol-!
AU = g +w = 33,340 - 3193 = 30,147 J mol-!

AG = 0 because the evaporation is reversible at the boiling point
and 1 atm.
33 340 J mol-!

<_ frev _ 33540 mol™” 1 mal-1
== 384 K =86.8 J K-! mol

If the Gibbs energy varies with temperature according to

GIT=a+ bIT + cIT?

How will the enthalpy and entropy vary with temperature? Check that these three
equations are consistent.

SOLUTION

G=aT+b+clT

0G
G,

=-S=a-clT?

S=-a+c/T?

[

d(GIT)
oT “p

=- HI/T? = - b/T? - 2c/T3

H=b+2c/T
G=H-TS=aT+b+clT
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4.17 Calculate the change in molar Gibbs energy G when supercooled water at -3 °C
freezes at constant T and P. The density of ice at -3 °C is 0.917 x 103 kg m3, and
its vapor pressure is 475 Pa. The density of supercooled water at -3 °C is 0.9996 kg

m-3 and its vapor pressure is 489 Pa.

SOLUTION

- (18.015 x 10-3 kg mol-1)

Vs = (0.917 x 103 kg m™3)
=1.965 x 105 m3 mol-!
7 = (18.015 x 10-3 kg mol"1)

(0.9996 x 103 kg m*3)
= 1.802 x 10-5 m3 mol-!

Since the actual process is irreversible, the calculation uses the following reversible

isothermal path:

H,0(l, 270.15 K, 105 Pa)

489 _

J,Abp,[ VidP=-1.7 Y mol-!
105

H,0(1, 270.15 K, 489 Pa)
\L AGy =0

H,0(g, 270.15 K, 489 Pa)

4.18

AG3; = RT In (475/489) = - 65.2 J mol!

AG = AG1 + AG2 + AG3 + AG4 + AGs

=-1740-652+19
=-65.0J moll

H,0(s, 270.15 K, 105 Pa)

T _ 105 _
AG5=I VdP = - 1.9 I mol-!
475

H,0(s, 270.15 K, 475 Pa)

TAE;4=0

H,0(g, 270.15 K, 475 Pa)

Calculate the molar Gibbs energy of fusion when supercooled water at -3°C
freezes at constant T and P. The molar enthalpy of fusion of ice is 6000 J mol-1 at 0
°C. The heat capacities of water and ice in the vicinity of the freezing point are 75.3

and 38 J K-1 mol-}, respectively.
SOLUTION

Since the actual process in irreversible, the calculation uses the following reversible

isobaric path.
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H,0(l, 273.15 K, 1 bar) — HyO(s, 273.15, 1 bar)
T l

H,0(l, 270.15 K, 1 bar) = H20(s, 270.15, 1 bar)

To obtain AsysG (270.15 K), we have to calculate AgygH (270.15 K) and AfysS

(270.15 K) separately and use
AfusG = AfusH - 270.15 AfusS.

270.15

AfusH(270.15K) = AsysH(273.15K) + _[ s AgysCp dT

=-6000 + (38 - 75.3)(-3)

=-5888 J mol-1
AfusS(270.15K) = - 6000/273.15 + AgysCp In(270.15/273.15)

=-21.56 T mol-1
AfysG = AgusH - TAfysS = - 5888 - (270.15)(- 21.56)
=-63.6 J mol-!

At 298.15 K and a particular pressure, a real gas has a fugacity coefficient ¢ of 2.00.
At this pressure, what is the difference in the chemical potential of this real gas and
an ideal gas?

SOLUTION

p(ideal) = u° + RTIn(P/P°)

u(real) = u° + RTIn(pP/P°)

U(real) - u(ideal) = RTIng = (8.314J K-1 mol-1)(298.15 K)In2
= 1.72 kJ mol-!

As shown in Example 4.7, the fugacity of a van der Waals gas is given by a fairly
simple expression if only the second virial coefficient is used. To this degree of

approximation derive the expressions for G, S, A, U, H, and V.

SOLUTION

é=é°+RTln(%)=é°+RTln ({_%) +(b-1—%. P

5--(9) -o-rn(D) + 2
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A=G-P(3—6P =GO+ RTn (—If—o)-RT

aP

I—J=C—;-T(%(—%)P-P(%% T=(_;°+T§°-RT-§7—.

aP 7. aP

RT =UV°"RT

Since the second term is small, we can use the ideal gas law to obtain
U=U°-(@aV)

Note that this agrees with the earlier result (Section 4.4) that
(BU/GV)T = a/V?

= HO - RT -

aP

H=U+pv=00+%L aP
H=U+PV-U°+RT+RT+bP-RT

= 2a
=H° + (b - R—T)P
7= (%) KT, 2
~Nop/7 P “RT
Using the relation derived in Example 4.7, calculate the fugacity of Ha(g) at 100 bar

at 298 K.
SOLUTION

f=Pexp [(b-I—?T)I—%

= (100 bar) exp { [0.02661 - 0.2476/(0.08314)(298)]100/(0.08314)(298)}
= 106.9 bar

Show that if the compressibility factor is given by Z= 1 + BPIRT the fugacity is
given by f= PeZ1. If Zis not very different from unity, eZl=1+(Z-1) +-=2
so that f= PZ. Using this approximation, what is the fugacity of Ha(g) at 50 bar
and 298 K using its van der Waals constants?

SOLUTION
Substituting this expression for the compressibility factor in equation 4.78,

}z,'= exp [J.Z (B/RT)dP]

= exp(BP/RT)
=exp(Z-1)
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If Z is not very different from unity, f=PZ.
For Hy(g) at 50 bar and 298 K, '

Z=1+(b-a/RT) PIRT
=1+ (0.02661 L mol-!

__0.02476 L2 bar mol-2 ) 50 bar
0.08314 L bar K-1 mol-1/ (0.08314)(298)

=1.0335
f= (50 bar)(1.0335) = 5.17 bar

Calculate the partial molar volume of zinc chloride in 1-molal ZnClj solution using
the following data.

% by weight of ZnCl; 2 6 10 14 18
Density/g cm3 1.0167 1.0532 1.0891 1.1275 1.1665
SOLUTION

Consider a kilogram of solution that is 2% by weight ZnCla, so that it contains 20 g
of ZnCl, and 980 g of HyO. Since there are (20 g/136.28 g mol-1) mol for 980 g
H,0, the molality is given by m(ZnCly) =20 x 1000/ 136.58 x 980 = 0.14975 mol
kg-!. The volume of solution containing 1000 g of HpO is given by

Tﬁ)%cgn? = 1003.6 cm3
Volume Containing
Wt % Molality 1000 g of H2O
2 0.1497 m 1003.2
6 0.4683 1010.1
10 0.8152 1020.2
14 1.194 1031.3

18 1.610 1045.5
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v
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m
0.5 1 1.5 2

The slope of this plot at m = 1 molar can be obtained by drawing a tangent at m = 1
and calculating its slope. This yields 29.3 cm3 mol-1, and so this is the partial molar
volume of ZnCly. Mathematica ™ was used to obtain a quadratic fit of the data.
This yielded
V =999.706 + 21.1601 m + 4.4639 m?2
so that the slope is 21.1601 + (2)(4.4639)m. Atm = 1 molal, this yields 30.06 cm3
mol-1.

424 Calculate ApixG and AmixS for the formation of a quantity of air containing 1 mol
of gas by mixing nitrogen and oxygen at 298.15 K. Air may be taken to be 80%
nitrogen and 20% oxygen by volume.

SOLUTION
AmixG = RT(y1 Iny1 + y2 In y2)
=(8.314 J K-1 mol-1)(298.15 K)(0.8 In 0.8 + 0.2In 0.2)
=- 1239 J mol-!
AmixS = - R(y1 In y1 + y2 In yp) = 4.159 T K-1 mol-!
425 A mole of gas A is mixed with a mole of gas B at 1 bar and 298 K. How much

work is required to separate these gases to produce a container of each at 1 bar and
298 K?

SOLUTION

The mixture can be separated by diffusion through a perfect semipermeable
membrane. The highest partial pressure of each that can be reached is 1/2 bar.
These gases then have to be compressed to 1 bar.

1 1
w = (2 mol) I1/2 VdP = (2 mol) Il/2 (RT/P)dP = (2 mol) RTIn 2
=2(8.314)(298) In 2
=34KkJ

The actual process will require more work.
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4.26 In studying statistical mechanics we will find (see Table 16.1) that for a monatomic

4.27

ideal gas, the molar Gibbs energy is given by

where numerical constants have been omitted so that only the functional dependence
on the natural variables of G, that is T and P, is shown. Derive the corresponding
equations for S, H, V, U, and A.

SOLUTION
The fundamental equation for Gis

dG = - SdT + VdP

Since

a:-%Tln T+TInP

the molar entropy is given by

- G 5 5 5 T5/2
S=-(—a—T' P=‘2‘+§1nT'lnP=§+ln";T‘

and the molar volume is given by

_ (9G
V= (——— = ;
oP’T
The expressions for the molar enthalpy, internal energy, and Helmholtz energy can
be calculated from the following Legendre transforms:

- = =5

H=G-TS=5T

- = =3

U=H-PV=5T

- - — /2
A=G-PV= ST+ TInP-T=-Tlnls - T

"2 P

Statistical mechanics shows that for a monatomic ideal gas, the molar Gibbs energy
is given by

G=-2TInT+ThP

ST
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where the numerical factors have been omitted so that only the functional
dependence on the natural variables, T and P, is shown. If we want to treat the
thermodynamics of an ideal monatomic gas at specified T and V without losing any
information, we cannot simply replace P with T/V and use

-%TlnT+T1nZ

even though this relatllcl)n is correct. If we want to treat the thermodynamics of an
ideal monatomic gas at specified 7 and V without losing any information, we have to
use the following Legendre transform to define the molar Helmholtz energy A.

A=G-PV
Use the expression for A obtained in this way to calculate §, _f/', ;1, and U for an ideal

monatomic gas as a function of 7 and V. Show that these expressions agree with
the expressions obtained in the preceding problem.

SOLUTION

Substitute the expressions for G and P into the Legendre transform to obtain
Z:-%Tln T-TV-T

The fundamental equation for the molar Helmholtz energy is

dA = - SdT - PdV

Thus the molar entropy is given by

W

=-( ) 1nT+] T/=§ In 7312V

and the molar volume is given by
0A T
P=- (—_)T =_

The values of the molar enthalpy and molar internal energy are given by the
following Legendre transforms:

H=A+ T§+PT/=%T
U=A+T5=3T
Substituting V=T/P in these expressions yields the same equations obtained in the
previous problem for these thermodynamic properties. The moral is that we can

change the variables in the expression for a thermodynamic property, but we cannot
differentiate this expression to obtain other thermodynamic properties unless the

variables in the expression are the natural variables for the thermodynamic potential.

We already know enough about the thermodynamics of a monatomic ideal gas to
express V, U, and S in terms of the natural variables of G, namely T, P, and n.
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V = nRT/P

_3
U-ZnRT

s=n{$+n[ (R ()]}

The last equation is the Sackur-Tetrode equation, where S° is the molar entropy at

the standard temperature 7°(298.15 K) and standard pressure PO(1 bar). The Gibbs
energy G(T,B,n) of the ideal monatomic gas can be calculated by using the
Legendre transform

G=U+PV-TS

The fundamental equation for G is

dG = - SdT + VdP + udn

Show that the correct expressions for S, V, and u are obtained by using the partial
derivatives of G indicated by this fundamental equation.

SOLUTION
= 2nRT + nRT - nRT{ %0 + 1n[(%)5/2(%)] }
G
§=- 57—' P,n

= %nRZ‘- nR + nR{SRg+ 1n[(—%)5/2(%)] } e nrrE (i)
- (S +u[ (B (P}

dG
v=(£) =nr1P
P

T,n
gG ’ 5 = T\52( P
=\ =RT\5-S°)+RTIn |\ —
4= () < r(3-5) erra [(D)7()]
Thus the correct expressions are obtained for S and V and the equation for the
chemical potential is consistent with = p° + RT In (P/P°).

dS = (CY/IT)AT + (o/K)dV

-0.0252 1 K-! mol-!

(8S/0P)T =0, (OH/P)T = V, (QUIOP)T=0
88.2 I mol-!
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(a) 4993, (b) 3655 J mol-!
168.97 J K-1 mol-!, 0, -11.42 kJ mol-!
(a) 6820 J mol-! (b) 6072 mol-! (c) 759 JK-1 mol! (d)0

(a) - 5229 J mol-1, (b) 5229 J mol'}, (¢) 0, (d) - 5229 J mol-1,
(€) 19.14 JK-1 mol-!, (f) 0, (g) 0, (h) 0, (i) - 5229 I mol-}, (j) 19.14 JK-! mol-l,
k)0, (1) 19.14 JK-1 mol-1

3100 J mol-!, - 40,690 J mol-1, - 37.6 kJ mol-1, - 34.5 kJ mol-],
3.1 kJ mol-1, - 109.0 J K- mol-1, 0 kJ mol-!

(a) - 6.754 kJ mol-1, (b) 0, (c) 0, (d) -6.754 kJ mol-1, (e) 22.51 J K-1 mol-!
0, 19.16 J K-1 mol-!

0, -13.38 J K-1 mol-!, 4991 J mol-1

33.34 kJ mol-1, 73.52 JK-1 mol-, 0

- 2121 J mol-1

AG = RT In (P/P}) + (b - alRT)(P3 - Py)

0.79 x 10-3 m3 kg-!

(a) 0.2033 x 10-3 m3 kg1 (b) 19.36 x 10-6 m3 mol-1
-47317J,15.88 JK-1

AvapS = 109.3 JK-! mol-1

AvapH =39.9 kJ mol-!

AyapG = - 3.6 kJ mol-!



