Chemistry 217

Problem Set 7
6.1. A 2-liter reaction vessel containing 0.466 moles of N_{2} and 0.682 moles of PCl_{5} is heated to $250^{\circ} \mathrm{C}$. The total pressure at equilibrium is 29.33 bar. Assuming that all gases are ideal, calculate Kp for the only reaction that occurs, viz.:

$$
\mathrm{PCl}_{5}(\mathrm{~g})=\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

6.2. Hydrogen is being considered as a replacement for petroleum based fuels. In order to produce extra hydrogen from "synthesis gas" $\left(\mathrm{CO}+\mathrm{H}_{2}\right)$ the water gas shift reaction is used:

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})=\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

Calculate Kp at 500 and 1000 K and the equilibrium extent of reaction starting with an equimolar mixture of CO and $\mathrm{H}_{2} \mathrm{O}$. Use the appropriate chemical thermodynamic data.
6.3. At high temperatures, Br_{2} vapor dissociates into atomic Br . At 1200 K , the free energy of formation $\Delta \mathrm{G}_{\mathrm{f}}^{\mathrm{o}}$ for atomic $\operatorname{Br}(\mathrm{g})$ is $31,794 \mathrm{~J}_{\mathrm{J}}$ mole ${ }^{-1}$.
(a) Calculate the change in free energy $\Delta \mathrm{G}^{0}$ and the equilibrium constant for the reaction:

$$
\mathrm{Br}_{2}(\mathrm{~g})=2 \mathrm{Br}(\mathrm{~g}) \text { at } 1200 \mathrm{~K}
$$

(b) Calculate the fraction of Br_{2} dissociated when 1 mole of Br_{2} is brought to 1200 K and 1 bar total pressure.
(c) What is the fraction dissociated at 10^{-2} bar (and 1200 K)?
6.4. Given the following entropies: $\mathrm{S}^{\circ}($ graphite $)=20.1 \mathrm{~J} . \mathrm{K}^{-1} ; \mathrm{S}^{\circ}\left(\mathrm{H}_{2}\right)=163 \mathrm{~J} \cdot \mathrm{~K}^{-1}$ and $\mathrm{S}^{\circ}\left(\mathrm{CH}_{4}\right)=234 \mathrm{~J} . \mathrm{K}^{-1}$, all at $600^{\circ} \mathrm{C}$. And given that $\Delta \mathrm{H}^{\circ}\left(600^{\circ} \mathrm{C}\right)=-88,050 \mathrm{~J}$ for the following reaction:

$$
\mathrm{C}(\text { graphite })+2 \mathrm{H}_{2}(\mathrm{~g})=\mathrm{CH}_{4}(\mathrm{~g})
$$

(a) Calculate Kp for the reaction at $600^{\circ} \mathrm{C}$.
(b) Assume $\Delta \mathrm{H}^{\circ}$ is independent of temperature and calculate Kp at $800^{\circ} \mathrm{C}$.
(c) In order to improve the yield of methane at equilibrium, would you increase or decrease the pressure?
6.5. For the change in state $\mathrm{C}($ diamond $)=\mathrm{C}($ graphite $), \Delta \mathrm{G}^{\mathrm{o}}(298 \mathrm{~K})=-2866 \mathrm{~J}_{\mathrm{J}} \mathrm{mol}^{-1}, \Delta \mathrm{H}^{\mathrm{o}}(298 \mathrm{~K})=-1883$ J. mol^{-1}, and $\Delta \mathrm{S}^{0}(298 \mathrm{~K})=+3.30 \mathrm{~J} . \mathrm{K}^{-1}$. At 1 bar, the density of graphite is $2.25 \mathrm{~g} / \mathrm{cm}^{3}$ and the density of diamond is $3.51 \mathrm{~g} / \mathrm{cm}^{3}$.
(a) At 298 K what is the applied pressure at which the diamond and graphite forms of carbon are in equilibrium? You may assume that $\Delta \mathrm{V}$ is independent of pressure.
(b) Can one find a temperature at which these two forms are in equilibrium at $\mathrm{p}=1$ bar? You may assume that $\Delta \mathrm{C}_{\mathrm{P}}=0$.

