Chemistry 217

Problem Set 2
2.1 A mole of ethane is contained in a 200 mL cylinder at 373 K . What is the pressure according to
(a) the ideal gas law and
(b) the Van der Waals equation?

The Van der Waals constants for ethane are $\mathrm{a}=5.562 \mathrm{~L}^{2} \cdot \mathrm{bar} \cdot \mathrm{mol}^{-2}$ and $\mathrm{b}=$ $0.06380 \mathrm{~L} . \mathrm{mol}^{-1}$.

2.2

(a) One mole of an ideal gas initially at $20^{\circ} \mathrm{C}$ and 20 bar is expanded isothermally and reversibly to a final volume of 300 L . Calculate the final pressure, the heat, and the work in the change of state.
(b) One mole of a monatomic ideal gas initially at $10^{\circ} \mathrm{C}$ and 20 bar is expanded adiabatically and reversibly to a final volume of 300 L . Calculate the final pressure, the heat, and the work in the change of state. (You may need $\mathrm{C}_{\mathrm{V}}=3 \mathrm{R} / 2$)
2.3 You want to heat 1 kg of water at $10^{\circ} \mathrm{C}$, and you have the following four methods under consideration. The heat capacity of water is $4.184 \mathrm{~J} . \mathrm{K}^{-1} \cdot \mathrm{~g}^{-1}$.
(a) You can heat it with a mechanical eggbeater that is powered by a $1-\mathrm{kg}$ mass on a rope over a pulley. How far does the mass have to descend in the earth's gravitational field to supply enough work?
(b) You can send 1 A through a 100Ω resistor. How long will it take?
(c) You can send the water through a solar collector that has an area of $1 \mathrm{~m}^{2}$. How long will it take if the sun's intensity on the collector is $4 \mathrm{J.cm}^{-2} \cdot \mathrm{~min} .^{-1}$?
(d) You can make a charcoal fire. The heat of combustion of graphite is -393 $\mathrm{kJ} . \mathrm{mol}^{-1}$. that is, 12 g of graphite will produce 393 kJ of heat when it is burned to $\mathrm{CO}_{2}(\mathrm{~g})$ at constant pressure. How much charcoal will have to burn?
2.4 Show the differential df is inexact.

$$
\mathrm{df}=\mathrm{dx}-\frac{\mathrm{x}}{\mathrm{y}} \mathrm{dy}
$$

Thus, the integral $\int \mathrm{df}$ depends on the path. However, we can define a new function g by

$$
\mathrm{dg}=\frac{1}{\mathrm{y}} \mathrm{df}
$$

which has the property that dg is exact. Show that dg is exact, so that

$$
\oint \mathrm{dg}=0
$$

2.5 Show that the function $f(x, y)$ defined by

$$
d f(x, y)=(x+2 y) d x-x d y
$$

is inexact. Test to see whether the integrating factor $1 / x^{3}$ makes it an exact differential.
2.6 Show that the function defined by

$$
d f(x, y)=\left(y^{2}-x y\right) d x-x^{2} d y
$$

is inexact. Test the integrating factor $1 / \mathrm{xy}^{2}$ to see whether it produces an exact differential.
2.7 One mole of nitrogen at $25^{\circ} \mathrm{C}$ and 1 bar is expanded reversibly and isothermally to a pressure of 0.132 bar.
(a) What is the value of w ?
(b) What is the value of w if the nitrogen is expanded against a constant pressure of 0.132 bar?

2.8

(a) Derive the equation for the work of reversible isothermal expansion of a van der Waals gas from V_{1} to V_{2}.
(b) A mole of CH_{4} expands reversibly from 1 to 50 L at $25^{\circ} \mathrm{C}$. Calculate the work in joules assuming
i) the gas is ideal
ii) the gas obeys the van der Waals equation. For $\mathrm{CH}_{4}(\mathrm{~g}), \mathrm{a}=2.283 \mathrm{~L}^{2}$.bar. mol^{-2} and $b=0.04278$ L. $^{2} \mathrm{~mol}^{-1}$.

